Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 49(6): 1822-1832, 2022 05.
Article in English | MEDLINE | ID: mdl-34957527

ABSTRACT

PURPOSE: The fibroblast activation protein (FAP) is an emerging target for molecular imaging and therapy in cancer. OncoFAP is a novel small organic ligand for FAP with very high affinity. In this translational study, we establish [68Ga]Ga-OncoFAP-DOTAGA (68Ga-OncoFAP) radiolabeling, benchmark its properties in preclinical imaging, and evaluate its application in clinical PET scanning. METHODS: 68Ga-OncoFAP was synthesized in a cassette-based fully automated labeling module. Lipophilicity, affinity, and serum stability of 68Ga-OncoFAP were assessed by determining logD7.4, IC50 values, and radiochemical purity. 68Ga-OncoFAP tumor uptake and imaging properties were assessed in preclinical dynamic PET/MRI in murine subcutaneous tumor models. Finally, biodistribution and uptake in a variety of tumor types were analyzed in 12 patients based on individual clinical indications that received 163 ± 50 MBq 68Ga-OncoFAP combined with PET/CT and PET/MRI. RESULTS: 68Ga-OncoFAP radiosynthesis was accomplished with high radiochemical yields. Affinity for FAP, lipophilicity, and stability of 68Ga-OncoFAP measured are ideally suited for PET imaging. PET and gamma counting-based biodistribution demonstrated beneficial tracer kinetics and high uptake in murine FAP-expressing tumor models with high tumor-to-blood ratios of 8.6 ± 5.1 at 1 h and 38.1 ± 33.1 at 3 h p.i. Clinical 68Ga-OncoFAP-PET/CT and PET/MRI demonstrated favorable biodistribution and kinetics with high and reliable uptake in primary cancers (SUVmax 12.3 ± 2.3), lymph nodes (SUVmax 9.7 ± 8.3), and distant metastases (SUVmax up to 20.0). CONCLUSION: Favorable radiochemical properties, rapid clearance from organs and soft tissues, and intense tumor uptake validate 68Ga-OncoFAP as a powerful alternative to currently available FAP tracers.


Subject(s)
Gallium Radioisotopes , Neoplasms , Animals , Fibroblasts/metabolism , Humans , Ligands , Mice , Neoplasms/metabolism , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Tissue Distribution
3.
Nuklearmedizin ; 44 Suppl 1: S46-50, 2005.
Article in English | MEDLINE | ID: mdl-16395979

ABSTRACT

Motion in PET/CT leads to artifacts in the reconstructed PET images due to the different acquisition times of positron emission tomography and computed tomography. The effect of motion on cardiac PET/CT images is evaluated in this study and a novel approach for motion correction based on optical flow methods is outlined. The Lukas-Kanade optical flow algorithm is used to calculate the motion vector field on both simulated phantom data as well as measured human PET data. The motion of the myocardium is corrected by non-linear registration techniques and results are compared to uncorrected images.


Subject(s)
Heart/diagnostic imaging , Movement/physiology , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Heart/physiology , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL