Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 19(10)2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30297650

ABSTRACT

Esophageal adenocarcinoma (EAC) is a highly lethal cancer type with an overall poor survival rate. Twenty to thirty percent of EAC overexpress the human epidermal growth factor receptor 2 (Her2), a transmembrane receptor tyrosine kinase promoting cell growth and proliferation. Patients with Her2 overexpressing breast and gastroesophageal cancer may benefit from Her2 inhibitors. Therapy resistance, however, is well documented. Since autophagy, a lysosome-dependent catabolic process, is implicated in cancer resistance mechanisms, we tested whether autophagy modulation influences Her2 inhibitor sensitivity in EAC. Her2-positive OE19 EAC cells showed an induction in autophagic flux upon treatment with the small molecule Her2 inhibitor Lapatinib. Newly generated Lapatinib-resistant OE19 (OE19 LR) cells showed increased basal autophagic flux compared to parental OE19 (OE19 P) cells. Based on these results, we tested if combining Lapatinib with autophagy inhibitors might be beneficial. OE19 P showed significantly reduced cell viability upon double treatment, while OE19 LR were already sensitive to autophagy inhibition alone. Additionally, Her2 status and autophagy marker expression (LC3B and p62) were investigated in a treatment-naïve EAC patient cohort (n = 112) using immunohistochemistry. Here, no significant correlation between Her2 status and expression of LC3B and p62 was found. Our data show that resistance to Her2-directed therapy is associated with a higher basal autophagy level, which is not per se associated with Her2 status. Therefore, we propose that autophagy may contribute to acquired resistance to Her2-targeted therapy in EAC, and that combining Her2 and autophagy inhibition might be beneficial for EAC patients.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Esophageal Neoplasms/drug therapy , Lapatinib/pharmacology , Adenocarcinoma/metabolism , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm , Esophageal Neoplasms/metabolism , HEK293 Cells , Humans , Lapatinib/therapeutic use , Receptor, ErbB-2/antagonists & inhibitors
2.
Vet Immunol Immunopathol ; 178: 29-36, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27496740

ABSTRACT

To reduce the risk of enteric disease in poultry, knowledge of how bird gut innate defences mature with age while also responding to different rearing environments is necessary. In this study the gut innate responses of two phylogenetically distinct lines of poultry raised from hatch to 35days, in conditions mimicing high hygiene (HH) and low hygiene (LH) rearing environments, were compared. Analyses focussed on the proximal gut antimicrobial activities and the duodenal and caecal AvBD1, 4 and 10 defensin profiles. Variability in microbial killing was observed between individual birds in each of the two lines at all ages, but samples from day 0 birds (hatch) of both lines exhibited marked killing properties, Line X: 19±11% (SEM) and Line Y: 8.5±12% (SEM). By day 7 a relaxation in killing was observed with bacterial survival increased from 3 (Line Y (LY)) to 11 (Line X (LX)) fold in birds reared in the HH environment. A less marked response was observed in the LH environment and delayed until day 14. At day 35 the gut antimicrobial properties of the two lines were comparable. The AvBD 1, 4 and 10 data relating to the duodenal and caecal tissues of day 0, 7 and 35 birds LX and LY birds revealed gene expression trends specific to each line and to the different rearing environments although the data were confounded by inter-individual variability. In summary elevated AvBD1 duodenal expression was detected in day 0 and day 7 LX, but not LY birds, maintained in LH environments; Line X and Y duodenal AvBD4 profiles were detected in day 7 birds reared in both environments although duodenal AvBD10 expression was less sensitive to bird age and rearing background. Caecal AvBD1 expression was particularly evident in newly hatched birds. These data suggest that proximal gut antimicrobial activity is related to the bird rearing environments although the roles of the AvBDs in such activities require further investigation.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Avian Proteins/immunology , Chickens/immunology , Chickens/microbiology , Animal Husbandry , Animals , Animals, Newborn , Antimicrobial Cationic Peptides/genetics , Avian Proteins/genetics , Cecum/immunology , Cecum/microbiology , Chickens/genetics , Defensins/genetics , Defensins/immunology , Duodenum/immunology , Duodenum/microbiology , Gastrointestinal Microbiome/genetics , Immunity, Innate , Male , Proteome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...