Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 13: 1203159, 2023.
Article in English | MEDLINE | ID: mdl-37593760

ABSTRACT

Introduction: Many Gram-negative plant- and animal-pathogenic bacteria employ type IV secretion (T4S) systems to transport proteins or DNA/protein complexes into eukaryotic or bacterial target cells. T4S systems have been divided into minimized and expanded T4S systems and resemble the VirB/VirD4 T4S system from the plant pathogen Agrobacterium tumefaciens and the Icm/Dot T4S system from the human pathogen Legionella pneumophila, respectively. The only known plant pathogen with both types of T4S systems is Xanthomonas euvesicatoria which is the causal agent of bacterial spot disease on pepper and tomato plants. Results and discussion: In the present study, we show that virB/virD4 and icm/dot T4S genes are expressed and encode components of oligomeric complexes corresponding to known assemblies of VirB/VirD4 and Icm/Dot proteins. Both T4S systems are dispensable for the interaction of X. euvesicatoria with its host plants and do not seem to confer contact-dependent lysis of other bacteria, which was previously shown for the chromosomally encoded VirB/VirD4 T4S system from Xanthomonas axonopodis pv. citri. The corresponding chromosomal T4S gene cluster from X. euvesicatoria is incomplete, however, the second plasmid-localized vir gene cluster encodes a functional VirB/VirD4 T4S system which contributes to plasmid transfer. In agreement with this finding, we identified the predicted relaxase TraI as substrate of the T4S systems from X. euvesicatoria. TraI and additional candidate T4S substrates with homology to T4S effectors from X. axonopodis pv. citri interact with the T4S coupling protein VirD4. Interestingly, however, the predicted C-terminal VirD4-binding sites are not sufficient for T4S, suggesting the contribution of additional yet unknown mechanisms to the targeting of T4S substrates from X. euvesicatoria to both VirB/VirD4 and Icm/Dot T4S systems.


Subject(s)
Legionella pneumophila , Xanthomonas , Animals , Humans , Type IV Secretion Systems/genetics , Eukaryota , Xanthomonas/genetics
2.
Front Plant Sci ; 13: 955776, 2022.
Article in English | MEDLINE | ID: mdl-35968103

ABSTRACT

The Gram-negative plant-pathogenic bacterium Xanthomonas euvesicatoria is the causal agent of bacterial spot disease in pepper and tomato plants. Pathogenicity of X. euvesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells and is associated with an extracellular pilus and a translocon in the plant plasma membrane. Effector protein translocation is activated by the cytoplasmic T3S chaperone HpaB which presumably targets effectors to the T3S system. We previously reported that HpaB is controlled by the translocated regulator HpaA which binds to and inactivates HpaB during the assembly of the T3S system. In the present study, we show that translocation of HpaA depends on the T3S substrate specificity switch protein HpaC and likely occurs after pilus and translocon assembly. Translocation of HpaA requires the presence of a translocation motif (TrM) in the N-terminal region. The TrM consists of an arginine-and proline-rich amino acid sequence and is also essential for the in vivo function of HpaA. Mutation of the TrM allowed the translocation of HpaA in hpaB mutant strains but not in the wild-type strain, suggesting that the recognition of the TrM depends on HpaB. Strikingly, the contribution of HpaB to the TrM-dependent translocation of HpaA was independent of the presence of the C-terminal HpaB-binding site in HpaA. We propose that HpaB generates a recognition site for the TrM at the T3S system and thus restricts the access to the secretion channel to effector proteins. Possible docking sites for HpaA at the T3S system were identified by in vivo and in vitro interaction studies and include the ATPase HrcN and components of the predicted cytoplasmic sorting platform of the T3S system. Notably, the TrM interfered with the efficient interaction of HpaA with several T3S system components, suggesting that it prevents premature binding of HpaA. Taken together, our data highlight a yet unknown contribution of the TrM and HpaB to substrate recognition and suggest that the TrM increases the binding specificity between HpaA and T3S system components.

3.
Front Microbiol ; 12: 752733, 2021.
Article in English | MEDLINE | ID: mdl-34721356

ABSTRACT

Pathogenicity of the Gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. T3S systems are conserved in plant- and animal-pathogenic bacteria and consist of at least nine structural core components, which are designated Sct (secretion and cellular translocation) in animal-pathogenic bacteria. Sct proteins are involved in the assembly of the membrane-spanning secretion apparatus which is associated with an extracellular needle structure and a cytoplasmic sorting platform. Components of the sorting platform include the ATPase SctN, its regulator SctL, and pod-like structures at the periphery of the sorting platform consisting of SctQ proteins. Members of the SctQ family form a complex with the C-terminal protein domain, SctQC, which is translated as separate protein and likely acts either as a structural component of the sorting platform or as a chaperone for SctQ. The sorting platform has been intensively studied in animal-pathogenic bacteria but has not yet been visualized in plant pathogens. We previously showed that the SctQ homolog HrcQ from X. campestris pv. vesicatoria assembles into complexes which associate with the T3S system and interact with components of the ATPase complex. Here, we report the presence of an internal alternative translation start site in hrcQ leading to the separate synthesis of the C-terminal protein region (HrcQC). The analysis of genomic hrcQ mutants showed that HrcQC is essential for pathogenicity and T3S. Increased expression levels of hrcQ or the T3S genes, however, compensated the lack of HrcQC. Interaction studies and protein analyses suggest that HrcQC forms a complex with HrcQ and promotes HrcQ stability. Furthermore, HrcQC colocalizes with HrcQ as was shown by fluorescence microscopy, suggesting that it is part of the predicted cytoplasmic sorting platform. In agreement with this finding, HrcQC interacts with the inner membrane ring protein HrcD and the SctK-like linker protein HrpB4 which contributes to the docking of the HrcQ complex to the membrane-spanning T3S apparatus. Taken together, our data suggest that HrcQC acts as a chaperone for HrcQ and as a structural component of the predicted sorting platform.

4.
Cell Microbiol ; 23(6): e13327, 2021 06.
Article in English | MEDLINE | ID: mdl-33733571

ABSTRACT

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper and tomato plants. Pathogenicity of X. campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into plant cells. At least nine membrane-associated and cytoplasmic components of the secretion apparatus are homologous to corresponding Sct (secretion and cellular translocation) proteins from animal pathogens, suggesting a similar structural organisation of T3S systems in different bacterial species. T3S in X. campestris pv. vesicatoria also depends on non-conserved proteins with yet unknown function including the essential pathogenicity factor HrpB4. Here, we show that HrpB4 localises to the cytoplasm and the bacterial membranes and interacts with the cytoplasmic domain of the inner membrane (IM) ring component HrcD and the cytoplasmic HrcQ protein. The analysis of HrpB4 deletion derivatives revealed that deletion of the N- or C-terminal protein region affects the interaction of HrpB4 with HrcQ and HrcD as well as its contribution to pathogenicity. HrcQ is a component of the predicted sorting platform, which was identified in animal pathogens as a dynamic heterooligomeric protein complex and associates with the IM ring via SctK proteins. HrcQ complex formation was previously shown by fluorescent microscopy analysis and depends on the presence of the T3S system. In the present study, we provide experimental evidence that the absence of HrpB4 severely affects the docking of HrcQ complexes to the T3S system but does not significantly interfere with HrcQ complex formation in the bacterial cytoplasm. Taken together, our data suggest that HrpB4 links the predicted cytoplasmic sorting platform to the IM rings of the T3S system.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Type III Secretion Systems/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Cytoplasm/metabolism , Protein Binding , Protein Transport , Type III Secretion Systems/genetics , Xanthomonas campestris/pathogenicity
5.
Cell Microbiol ; 22(5): e13160, 2020 05.
Article in English | MEDLINE | ID: mdl-31913558

ABSTRACT

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N- and C-terminal coiled-coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N- and C-terminal coiled-coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.


Subject(s)
Bacterial Proteins/metabolism , Type III Secretion Systems/metabolism , Xanthomonas campestris/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Molecular Chaperones/metabolism , Mutation , Sequence Deletion , Type III Secretion Systems/genetics , Xanthomonas campestris/genetics
6.
ACS Synth Biol ; 8(3): 532-547, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30694661

ABSTRACT

Type III secretion (T3S) systems are essential pathogenicity factors of most Gram-negative bacteria and translocate effector proteins into plant or animal cells. T3S systems can, therefore, be used as tools for protein delivery into eukaryotic cells, for instance after transfer of the T3S gene cluster into nonpathogenic recipient strains. Here, we report the modular cloning of the T3S gene cluster from the plant-pathogenic bacterium Xanthomonas euvesicatoria. The resulting multigene construct encoded a functional T3S system and delivered effector proteins into plant cells. The modular design of the T3S gene cluster allowed the efficient replacement and rearrangement of single genes or operons and the insertion of reporter genes for functional studies. In the present study, we used the modular T3S system to analyze the assembly of a fluorescent fusion of the predicted cytoplasmic ring protein HrcQ. Our studies demonstrate the use of the modular T3S gene cluster for functional analyses and mutant approaches in X. euvesicatoria. A potential application of the modular T3S system as protein delivery tool is discussed.


Subject(s)
Cloning, Molecular/methods , Multigene Family , Plants/microbiology , Type III Secretion Systems/genetics , Xanthomonas/genetics , Bacterial Proteins/genetics , Feedback, Physiological , Gene Expression Regulation, Bacterial , Genes, Reporter , Genetic Vectors , Green Fluorescent Proteins/metabolism , Operon/genetics , Phenotype , Protein Biosynthesis/genetics , Protein Transport
7.
Mol Plant Microbe Interact ; 31(1): 61-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28771395

ABSTRACT

Pathogenicity of the gram-negative bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which translocates effector proteins into plant cells. Effector proteins contain N-terminal T3S and translocation signals and interact with the T3S chaperone HpaB, which presumably escorts effectors to the secretion apparatus. The molecular mechanisms underlying the recognition of effectors by the T3S system are not yet understood. In the present study, we analyzed T3S and translocation signals in the type III effectors XopE2 and XopJ from X. campestris pv. vesicatoria. Both effectors contain minimal translocation signals, which are only recognized in the absence of HpaB. Additional N-terminal signals promote translocation of XopE2 and XopJ in the wild-type strain. The results of translocation and interaction studies revealed that the interaction of XopE2 and XopJ with HpaB and a predicted cytoplasmic substrate docking site of the T3S system is not sufficient for translocation. In agreement with this finding, we show that the presence of an artificial HpaB-binding site does not promote translocation of the noneffector XopA in the wild-type strain. Our data, therefore, suggest that the T3S chaperone HpaB not only acts as an escort protein but also controls the recognition of translocation signals.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Xanthomonas campestris/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Gene Deletion , Models, Biological , Molecular Chaperones/metabolism , Protein Transport , Sequence Deletion
8.
Front Microbiol ; 8: 2180, 2017.
Article in English | MEDLINE | ID: mdl-29170655

ABSTRACT

Pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system which translocates effector proteins into plant cells. Effector protein delivery is controlled by the T3S chaperone HpaB, which presumably escorts effector proteins to the secretion apparatus. One intensively studied effector is the transcription activator-like (TAL) effector AvrBs3, which binds to promoter sequences of plant target genes and activates plant gene expression. It was previously reported that type III-dependent delivery of AvrBs3 depends on the N-terminal protein region. The signals that control T3S and translocation of AvrBs3, however, have not yet been characterized. In the present study, we show that T3S and translocation of AvrBs3 depend on the N-terminal 10 and 50 amino acids, respectively. Furthermore, we provide experimental evidence that additional signals in the N-terminal 30 amino acids and the region between amino acids 64 and 152 promote translocation of AvrBs3 in the absence of HpaB. Unexpectedly, in vivo translocation assays revealed that AvrBs3 is delivered into plant cells even in the absence of HrpF, which is the predicted channel-forming component of the T3S translocon in the plant plasma membrane. The presence of HpaB- and HrpF-independent transport routes suggests that the delivery of AvrBs3 is initiated during early stages of the infection process, presumably before the activation of HpaB or the insertion of the translocon into the plant plasma membrane.

9.
Sci Rep ; 7(1): 4879, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687734

ABSTRACT

Plant pathogenic bacteria exerts their pathogenicity through the injection of large repertoires of type III effectors (T3Es) into plant cells, a mechanism controlled in part by type III chaperones (T3Cs). In Ralstonia solanacearum, the causal agent of bacterial wilt, little is known about the control of type III secretion at the post-translational level. Here, we provide evidence that the HpaB and HpaD proteins do act as bona fide R. solanacearum class IB chaperones that associate with several T3Es. Both proteins can dimerize but do not interact with each other. After screening 38 T3Es for direct interactions, we highlighted specific and common interacting partners, thus revealing the first picture of the R. solanacearum T3C-T3E network. We demonstrated that the function of HpaB is conserved in two phytopathogenic bacteria, R. solanacearum and Xanthomonas campestris pv. vesicatoria (Xcv). HpaB from Xcv is able to functionally complement a R. solanacearum hpaB mutant for hypersensitive response elicitation on tobacco plants. Likewise, Xcv is able to translocate a heterologous T3E from R. solanacearum in an HpaB-dependent manner. This study underlines the central role of the HpaB class IB chaperone family and its potential contribution to the bacterial plasticity to acquire and deliver new virulence factors.


Subject(s)
Molecular Chaperones/metabolism , Ralstonia solanacearum/metabolism , Type III Secretion Systems/metabolism , Virulence Factors/metabolism , Xanthomonas campestris/metabolism , Solanum lycopersicum/microbiology , Molecular Chaperones/chemistry , Plant Diseases/microbiology , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Protein Multimerization , Protein Transport
10.
Methods Mol Biol ; 1531: 121-139, 2017.
Article in English | MEDLINE | ID: mdl-27837487

ABSTRACT

Gram-negative plant- and animal-pathogenic bacteria use type III secretion (T3S) systems to translocate effector proteins into eukaryotic host cells. Type III-dependent delivery of effector proteins depends on a secretion and translocation signal, which is often located in the N-terminal protein region and is not conserved on the amino acid level. Translocation signals in effector proteins have been experimentally confirmed by employing reporter proteins, which are specifically activated inside eukaryotic cells. Here, we describe a method to monitor effector protein translocation using a deletion derivative of the transcription activator-like (TAL) effector protein AvrBs3 as reporter. AvrBs3 is a type III effector of the tomato and pepper pathogen X. campestris pv. vesicatoria and is imported into the plant cell nucleus where it binds to specific promoter elements of target genes and activates their transcription. The N-terminal deletion derivative AvrBs3∆2 lacks a functional T3S and translocation signal but contains the effector domain and induces plant gene expression when fused to a functional translocation signal. In resistant pepper plants, AvrBs3 and translocated AvrBs3∆2 fusion proteins induce the expression of the Bs3-resistance gene, which triggers a strong, macroscopically visible defense response. The protocol for translocation assays with AvrBs3∆2 fusion proteins includes (1) the generation of expression constructs by Golden Gate cloning, (2) the transfer of expression constructs into bacterial recipient strains, (3) in vitro secretion assays with reporter fusion proteins and (4) infection of AvrBs3-responsive pepper plants.


Subject(s)
Bacterial Proteins/metabolism , Genes, Reporter , Transcription Factors/metabolism , Type III Secretion Systems/metabolism , Xanthomonas/genetics , Xanthomonas/metabolism , Bacterial Proteins/genetics , Gene Expression , Gene Order , Plant Diseases/microbiology , Plants/microbiology , Plasmids/genetics , Promoter Regions, Genetic , Protein Transport , Recombinant Fusion Proteins , Transcription Factors/genetics , Transformation, Bacterial , Type III Secretion Systems/genetics
11.
Infect Immun ; 85(2)2017 02.
Article in English | MEDLINE | ID: mdl-27895129

ABSTRACT

The pathogenicity of the Gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a type III secretion (T3S) system, which spans both bacterial membranes and translocates effector proteins into plant cells. The assembly of the T3S system presumably involves the predicted lytic transglycosylase (LT) HpaH, which is encoded adjacent to the T3S gene cluster. Bacterial LTs degrade peptidoglycan and often promote the formation of membrane-spanning macromolecular protein complexes. In the present study, we show that HpaH localizes to the bacterial periplasm and binds to peptidoglycan as well as to components of the T3S system, including the predicted periplasmic inner rod proteins HrpB1 and HrpB2 as well as the pilus protein HrpE. In vivo translocation assays revealed that HpaH promotes the translocation of various effector proteins and of early substrates of the T3S system, suggesting a general contribution of HpaH to type III-dependent protein export. Mutant studies and the analysis of reporter fusions showed that the N-terminal region of HpaH contributes to protein function and is proteolytically cleaved. The N-terminally truncated HpaH cleavage product is secreted into the extracellular milieu by a yet-unknown transport pathway, which is independent of the T3S system.


Subject(s)
Peptidoglycan Glycosyltransferase/metabolism , Type III Secretion Systems , Xanthomonas campestris/physiology , Xanthomonas vesicatoria/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Codon, Initiator , Gene Expression , Gene Expression Regulation, Bacterial , Models, Molecular , Molecular Conformation , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Peptidoglycan Glycosyltransferase/chemistry , Peptidoglycan Glycosyltransferase/genetics , Plants/microbiology , Protein Binding , Protein Biosynthesis , Protein Interaction Domains and Motifs , Protein Transport , Proteolysis , Recombinant Fusion Proteins/metabolism , Sequence Deletion
12.
Appl Environ Microbiol ; 82(11): 3331-3347, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27016569

ABSTRACT

UNLABELLED: The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate effector proteins into plant cells. The T3S apparatus spans both bacterial membranes and is associated with an extracellular pilus and a channel-like translocon in the host plasma membrane. T3S is controlled by the switch protein HpaC, which suppresses secretion and translocation of the predicted inner rod protein HrpB2 and promotes secretion of translocon and effector proteins. We previously reported that HrpB2 interacts with HpaC and the cytoplasmic domain of the inner membrane protein HrcU (C. Lorenz, S. Schulz, T. Wolsch, O. Rossier, U. Bonas, and D. Büttner, PLoS Pathog 4:e1000094, 2008, http://dx.doi.org/10.1371/journal.ppat.1000094). However, the molecular mechanisms underlying the control of HrpB2 secretion are not yet understood. Here, we located a T3S and translocation signal in the N-terminal 40 amino acids of HrpB2. The results of complementation experiments with HrpB2 deletion derivatives revealed that the T3S signal of HrpB2 is essential for protein function. Furthermore, interaction studies showed that the N-terminal region of HrpB2 interacts with the cytoplasmic domain of HrcU, suggesting that the T3S signal of HrpB2 contributes to substrate docking. Translocation of HrpB2 is suppressed not only by HpaC but also by the T3S chaperone HpaB and its secreted regulator, HpaA. Deletion of hpaA, hpaB, and hpaC leads to a loss of pathogenicity but allows the translocation of fusion proteins between the HrpB2 T3S signal and effector proteins into leaves of host and non-host plants. IMPORTANCE: The T3S system of the plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for pathogenicity and delivers effector proteins into plant cells. T3S depends on HrpB2, which is a component of the predicted periplasmic inner rod structure of the secretion apparatus. HrpB2 is secreted during the early stages of the secretion process and interacts with the cytoplasmic domain of the inner membrane protein HrcU. Here, we localized the secretion and translocation signal of HrpB2 in the N-terminal 40 amino acids and show that this region is sufficient for the interaction with the cytoplasmic domain of HrcU. Our results suggest that the T3S signal of HrpB2 is required for the docking of HrpB2 to the secretion apparatus. Furthermore, we provide experimental evidence that the N-terminal region of HrpB2 is sufficient to target effector proteins for translocation in a nonpathogenic X. campestris pv. vesicatoria strain.


Subject(s)
Bacterial Proteins/metabolism , Type III Secretion Systems/metabolism , Xanthomonas campestris/metabolism , DNA Mutational Analysis , Plant Diseases/microbiology , Protein Binding , Protein Interaction Mapping , Protein Sorting Signals , Protein Transport , Nicotiana
13.
FEMS Microbiol Rev ; 40(6): 894-937, 2016 11 01.
Article in English | MEDLINE | ID: mdl-28201715

ABSTRACT

Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.


Subject(s)
Bacterial Proteins , Gram-Negative Bacteria/pathogenicity , Plant Cells , Plant Immunity , Type III Secretion Systems , Disease Resistance/immunology , MAP Kinase Signaling System , Plant Cells/immunology , Plant Cells/microbiology
14.
J Bacteriol ; 197(17): 2879-93, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26124239

ABSTRACT

UNLABELLED: Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE: The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S substrates are being studied in several plant-pathogenic bacteria, including Xanthomonas campestris pv. vesicatoria, which causes bacterial spot disease in tomato and pepper. Here, we show that the T2S system from X. campestris pv. vesicatoria secretes virulence-associated xylanases, a predicted protease, and a lipase. Secretion assays with the related pathogen X. campestris pv. campestris revealed important differences in the T2S substrate specificities of the two pathogens. Furthermore, electron microscopy showed that T2S substrates from X. campestris pv. vesicatoria are targeted to outer membrane vesicles (OMVs). Our results, therefore, suggest that OMVs provide an alternative transport route for type II secreted extracellular enzymes.


Subject(s)
Bacterial Secretion Systems/physiology , Endo-1,4-beta Xylanases/metabolism , Peptide Hydrolases/metabolism , Transport Vesicles/physiology , Xanthomonas campestris/enzymology , Endo-1,4-beta Xylanases/genetics , Microscopy, Immunoelectron , Peptide Hydrolases/genetics , Plant Diseases/microbiology , Substrate Specificity , Virulence , Virulence Factors/metabolism , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Xanthomonas campestris/pathogenicity
15.
Microbiology (Reading) ; 160(Pt 3): 576-588, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24425767

ABSTRACT

The majority of Gram-negative plant- and animal-pathogenic bacteria employ a type III secretion (T3S) system to deliver effector proteins to eukaryotic cells. Members of the YscU protein family are essential components of the T3S system and consist of a transmembrane and a cytoplasmic region that is autocatalytically cleaved at a conserved NPTH motif. YscU homologues interact with T3S substrate specificity switch (T3S4) proteins that alter the substrate specificity of the T3S system after assembly of the secretion apparatus. We previously showed that the YscU homologue HrcU from the plant pathogen Xanthomonas campestris pv. vesicatoria interacts with the T3S4 protein HpaC and is required for the secretion of translocon and effector proteins. In the present study, analysis of HrcU deletion, insertion and point mutant derivatives led to the identification of amino acid residues in the cytoplasmic region of HrcU (HrcUC) that control T3S and translocation of the predicted inner rod protein HrpB2, the translocon protein HrpF and the effector protein AvrBs3. Mutations in the vicinity of the NPTH motif interfered with HrcU cleavage and/or the interaction of HrcUC with HrpB2 and the T3S4 protein HpaC. However, HrcU function was not completely abolished, suggesting that HrcU cleavage is not crucial for pathogenicity and T3S. Given that mutations in HrcU differentially affected T3S and translocation of HrpB2 and effector proteins, we propose that HrcU controls the secretion of different T3S substrate classes by independent mechanisms.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Xanthomonas/genetics , Xanthomonas/metabolism , Amino Acid Motifs , Amino Acid Sequence , Bacterial Proteins/chemistry , Biological Transport , DNA Transposable Elements , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Protein Transport , Sequence Alignment , Sequence Deletion
16.
Appl Environ Microbiol ; 79(20): 6312-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23934485

ABSTRACT

The plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria employs a type III secretion (T3S) system to translocate bacterial effector proteins into eukaryotic host cells. The membrane-spanning secretion apparatus consists of 11 core components and several associated proteins with yet unknown functions. In this study, we analyzed the role of HrpB1, which was previously shown to be essential for T3S and the formation of the extracellular T3S pilus. We provide experimental evidence that HrpB1 localizes to the bacterial periplasm and binds to peptidoglycan, which is in agreement with its predicted structural similarity to the putative peptidoglycan-binding domain of the lytic transglycosylase Slt70 from Escherichia coli. Interaction studies revealed that HrpB1 forms protein complexes and binds to T3S system components, including the inner membrane protein HrcD, the secretin HrcC, the pilus protein HrpE, and the putative inner rod protein HrpB2. The analysis of deletion and point mutant derivatives of HrpB1 led to the identification of amino acid residues that contribute to the interaction of HrpB1 with itself and HrcD and/or to protein function. The finding that HrpB1 and HrpB2 colocalize to the periplasm and both interact with HrcD suggests that they are part of a periplasmic substructure of the T3S system.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Peptidoglycan/metabolism , Periplasmic Proteins/metabolism , Xanthomonas campestris/metabolism , Bacterial Proteins/genetics , DNA Mutational Analysis , Gene Deletion , Periplasmic Proteins/genetics , Protein Binding , Protein Interaction Mapping , Xanthomonas campestris/genetics
17.
Mol Plant Microbe Interact ; 26(10): 1176-89, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23777429

ABSTRACT

Pathogenicity of the gram-negative plant-pathogenic bacterium Xanthomonas campestris pv. vesicatoria depends on a membrane-spanning type III secretion (T3S) system, which translocates effector proteins into eukaryotic host cells. In this study, we characterized the T3S system component HrcV, which is a member of the YscV/FlhA family of inner membrane proteins. HrcV consists of eight transmembrane helices and a cytoplasmic region (HrcVC). Mutant and protein-protein interaction studies showed that HrcVC is essential for protein function and binds to T3S substrates, including the early substrate HrpB2, the pilus protein HrpE, and effector proteins. Furthermore, HrcVC interacts with itself and with components and control proteins of the T3S apparatus. The interaction of HrcVC with HrpB2, HrpE, and T3S system components depends on amino acid residues in a conserved motif, designated flagella/hypersensitive response/invasion proteins export pore (FHIPEP), which is located in a cytoplasmic loop between transmembrane helix four and five of HrcV. Mutations in the FHIPEP motif abolish HrcV function but do not affect the interaction of HrcVC with effector proteins.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Capsicum/microbiology , Plant Diseases/microbiology , Xanthomonas campestris/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Cell Membrane/metabolism , Conserved Sequence , Cytoplasm/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Transport , Sequence Alignment , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity
18.
New Phytol ; 198(3): 899-915, 2013 May.
Article in English | MEDLINE | ID: mdl-23442088

ABSTRACT

Xylan is a major structural component of plant cell wall and the second most abundant plant polysaccharide in nature. Here, by combining genomic and functional analyses, we provide a comprehensive picture of xylan utilization by Xanthomonas campestris pv campestris (Xcc) and highlight its role in the adaptation of this epiphytic phytopathogen to the phyllosphere. The xylanolytic activity of Xcc depends on xylan-deconstruction enzymes but also on transporters, including two TonB-dependent outer membrane transporters (TBDTs) which belong to operons necessary for efficient growth in the presence of xylo-oligosaccharides and for optimal survival on plant leaves. Genes of this xylan utilization system are specifically induced by xylo-oligosaccharides and repressed by a LacI-family regulator named XylR. Part of the xylanolytic machinery of Xcc, including TBDT genes, displays a high degree of conservation with the xylose-regulon of the oligotrophic aquatic bacterium Caulobacter crescentus. Moreover, it shares common features, including the presence of TBDTs, with the xylan utilization systems of Bacteroides ovatus and Prevotella bryantii, two gut symbionts. These similarities and our results support an important role for TBDTs and xylan utilization systems for bacterial adaptation in the phyllosphere, oligotrophic environments and animal guts.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Gene Expression Regulation, Bacterial , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Xylans/metabolism , Adaptation, Physiological , Animals , Bacterial Outer Membrane Proteins/metabolism , Bacteroides/metabolism , Brassica/microbiology , Caulobacter crescentus/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Operon , Phaseolus/microbiology , Symbiosis , Xanthomonas campestris/growth & development , Xanthomonas campestris/pathogenicity , Xylose/metabolism , Xylosidases/genetics , Xylosidases/metabolism
19.
PLoS One ; 7(11): e51063, 2012.
Article in English | MEDLINE | ID: mdl-23226460

ABSTRACT

Pathogenicity of many Gram-negative bacteria depends on a type III secretion (T3S) system which translocates bacterial effector proteins into eukaryotic cells. The membrane-spanning secretion apparatus is associated with a cytoplasmic ATPase complex and a predicted cytoplasmic (C) ring structure which is proposed to provide a substrate docking platform for secreted proteins. In this study, we show that the putative C ring component HrcQ from the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria is essential for bacterial pathogenicity and T3S. Fractionation studies revealed that HrcQ localizes to the cytoplasm and associates with the bacterial membranes under T3S-permissive conditions. HrcQ binds to the cytoplasmic T3S-ATPase HrcN, its predicted regulator HrcL and the cytoplasmic domains of the inner membrane proteins HrcV and HrcU. Furthermore, we observed an interaction between HrcQ and secreted proteins including early and late T3S substrates. HrcQ might therefore act as a general substrate acceptor site of the T3S system and is presumably part of a larger protein complex. Interestingly, the N-terminal export signal of the T3S substrate AvrBs3 is dispensable for the interaction with HrcQ, suggesting that binding of AvrBs3 to HrcQ occurs after its initial targeting to the T3S system.


Subject(s)
Bacterial Proteins/metabolism , Bacterial Secretion Systems , Xanthomonas campestris/metabolism , Bacterial Proteins/chemistry , Binding Sites , Capsicum/microbiology , Cell Membrane/metabolism , Chromosomes, Bacterial/metabolism , Gene Deletion , Genes, Dominant , Genetic Complementation Test , Genome, Bacterial/genetics , Mutagenesis, Insertional/genetics , Protein Binding , Protein Structure, Tertiary , Protein Transport , Subcellular Fractions/metabolism , Substrate Specificity , Xanthomonas campestris/genetics , Xanthomonas campestris/growth & development , Xanthomonas campestris/pathogenicity
20.
Microbiol Mol Biol Rev ; 76(2): 262-310, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22688814

ABSTRACT

Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.


Subject(s)
Bacterial Proteins/metabolism , Gram-Negative Bacteria/physiology , Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Cell Membrane/metabolism , Eukaryotic Cells/metabolism , Flagella/metabolism , Gram-Negative Bacteria/pathogenicity , Membrane Proteins/chemistry , Plants/metabolism , Plants/microbiology , Protein Transport , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...