Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 149(14): 12597-12604, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37452202

ABSTRACT

PURPOSE: More than 99% of cervical cancers and up to 40% of vulvar cancers are human papillomavirus (HPV) related. HPV 16 and 18 are the most relevant subtypes. Novel technologies allow the detection of minimal amounts of circulating cell-free HPV DNA (ccfHPV-DNA). The aim of this study was to evaluate ccfHPV-DNA assessed by droplet digital PCR (ddPCR) as a biomarker for molecular therapy monitoring in early, advanced, relapsed and metastatic HPV-driven cervical and vulvar cancer. METHODS: Inclusion criteria of the study were histologically proven HPV 16/18-driven cervical and vulvar cancer with first diagnosed disease, newly diagnosed recurrence, or progression of disease. Blood samples were taken pre- and post-therapeutically. Circulating cell-free HPV DNA was quantified using ddPCR and the results were correlated with clinical data. RESULTS: The mean copy number of ccfHPV-DNA was 838.6 (± 3089.1) in pretreatment and 2.3 (± 6.4) in post-treatment samples (p < 0.05). The copy number of ccfHPV-DNA increased with higher FIGO stages (p < 0.05), which are commonly used for clinical staging/assessment. Furthermore, we compared the distribution of copy numbers between T-stage 1 versus T-stage 2/3. We could show higher copy number level of ccfHPV-DNA in T-stage 2/3 (p < 0.05). CONCLUSIONS: Therapy monitoring with determination of ccfHPV-DNA by ddPCR with a small amount of plasma reflects response to therapy and appears feasible for patients in advanced cancer stages of cervical and vulvar cancer. This promising tool should be examined as marker of therapy monitoring in particular in novel HPV-directed therapies.

2.
EMBO J ; 38(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30530478

ABSTRACT

Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP-dependent peri-centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP-tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP-tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de-clustering, prolonged multipolar mitosis, and cell death. 3D-organotypic invasion assays reveal that CCB02 has broad anti-invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)-resistant EGFR-mutant non-small-cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug-resistant cancers exhibiting high incidence of centrosome amplification.


Subject(s)
Centrosome/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasms/drug therapy , Small Molecule Libraries/administration & dosage , Tubulin/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Centrosome/drug effects , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Mice , Neoplasms/metabolism , Protein Binding/drug effects , Small Molecule Libraries/pharmacology , Xenograft Model Antitumor Assays
3.
Lab Invest ; 97(7): 863-872, 2017 07.
Article in English | MEDLINE | ID: mdl-28436954

ABSTRACT

Analysis of specific DNA alterations in precision medicine of tumors is crucially important for molecular targeted treatments. Lung cancer is a prototypic example and one of the leading causes of cancer-related deaths worldwide. One major technical problem of detecting DNA alterations in tissue samples is cellular heterogeneity, that is, mixture of tumor and normal cells. Microdissection is an important tool to enrich tumor cells from heterogeneous tissue samples. However, conventional laser capture microdissection has several disadvantages like user-dependent selection of regions of interest (ROI), high costs for dissection systems and long processing times. ROI selection in expression-based microdissection (xMD) directly relies on cancer cell-specific immunostaining. Whole-slide irradiation leads to localized energy absorption at the sites of most intensive staining and melting of a membrane covering the slide, so that tumor cells can be isolated by removing the complete membrane. In this study, we optimized xMD of lung cancer tissue by enhancing staining intensity of tumor cell-specific immunostaining and processing of the stained samples. This optimized procedure did not alter DNA quality and resulted in enrichment of mutated EGFR DNA from lung adenocarcinoma specimens after xMD. We here also introduce a quality control protocol based on digital whole-slide scanning and image analysis before and after xMD to quantify selectivity and efficiency of the procedure. In summary, this study provides a workflow for xMD, adapted and tested for lung cancer tissue that can be used for lung tumor cell dissection before diagnostic or investigatory analyses.


Subject(s)
Adenocarcinoma/genetics , DNA/genetics , Immunohistochemistry/methods , Lung Neoplasms/genetics , Microdissection/methods , Adenocarcinoma/chemistry , Adenocarcinoma/metabolism , Adenocarcinoma of Lung , DNA/analysis , Formaldehyde , Humans , Lung/chemistry , Lung Neoplasms/chemistry , Lung Neoplasms/metabolism , Molecular Diagnostic Techniques , Mutation/genetics , Staining and Labeling , Tissue Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...