Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(9): e2300033, 2023 09.
Article in English | MEDLINE | ID: mdl-37120148

ABSTRACT

Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1-3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.


Subject(s)
Burns , Oncorhynchus mykiss , Rats , Animals , Wound Healing , Collagen/pharmacology , Collagen/chemistry , Burns/drug therapy
2.
Biomater Adv ; 142: 213139, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36242859

ABSTRACT

Obtaining a sustainable drug delivery system is a challenging issue in biomedical science. This became even more important in the wound regeneration process due to its long treatment process. In this study, the calcium alginate (CaAlg) hydrogel is coated on the surface of polycaprolactone (PCL)/gelatin (Gel) nanofibers containing coconut oil (CO) using the impregnation method. The physical, chemical, and morphological properties of produced samples are investigated using different characterization techniques to verify the influence of hydrogel. Water contact angle, swelling ratio, and water vapor permeability measurements are used to evaluate the effect of hydrogel on the hydrophilicity of the proposed system. The cell viability test showed that the nanocomposite hydrogel is biocompatible and could improve wound healing. According to drug release studies, hydrogel addition to the nanofiber system plays an essential role in controlling CO release rate in the first 250 h. In vivo studies also indicated faster skin regeneration.


Subject(s)
Nanofibers , Nanofibers/chemistry , Hydrogels/pharmacology , Coconut Oil/pharmacology , Wound Healing , Gelatin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...