Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 19(2)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38364288

ABSTRACT

In this work, the semi solid extrusion 3D printing process was utilized to incorporate anti-HIV drug Dolutegravir and its nanoparticles into the buccal film (BF) that was fabricated using the developed polymer ink. The composite made of polyvinyl alcohol (PVA) and sodium alginate was processed into a 3D printing polymer ink with optimum viscosity (9587 ± 219 cP) needed for the seamless extrusion through the nozzle of the 3D printer. The formulated BFs were assessed for its physical properties like weight (0.414 ± 0.3 g), thickness (1.54 ± 0.02 mm), swelling index (18.5 ± 0.91%), and mucoadhesiveness strength (0.165 ± 0.09 N) etc, The structural integrity and the surface morphology of the developed BFs were investigated by scanning electron microscopy analysis. The chemical stability and the solid-state nature of the drug in the BFs were assessed by Fourier transform infrared and x-ray diffraction analysis respectively. Further the BFs were assessed for drug dissolutionin-vitroandex-vivo, to study the effect of polymer composition and printing condition on the dissolution profile of the drug in the simulated salivary fluid. The results demonstrated that the developed PVA based polymer ink for 3D printing utilizing pressure is a versatile approach in the context of manufacturing mucoadhesive BFs customized in terms of shape and the amount of drug loaded.


Subject(s)
Chitosan , Heterocyclic Compounds, 3-Ring , Nanoparticles , Oxazines , Piperazines , Pyridones , Humans , Child , Chitosan/chemistry , Polymers/chemistry , Polyvinyl Alcohol/chemistry , Printing, Three-Dimensional
2.
Sci Rep ; 12(1): 13907, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974065

ABSTRACT

Dolutegravir (DTG) is an antiretroviral drug approved in the year 2013, and being categorized as a BCS-II molecule, it possesses solubility issues. In order to enhance the solubility and improve its bioavailability, DTG-loaded Chitosan nanoparticles (NPs) were synthesized utilizing spray drying technology. The developed nanoformulation was characterized for its physicochemical properties and investigated for the feasibility of its administration through an oral route along with milk/food as an admixture for paediatric antiretroviral therapy. The in vivo oral bioavailability studies were conducted in Balb-C mice, where the animals were treated with the selected formulation of DTG-loaded Chitosan NPs and compared to pure DTG. The NPs exhibited 2.5-fold increase in the Cmax (77.54 ± 7.93 µg/mL) when compared to the pure DTG (30.15 ± 8.06 µg/mL). This phenomenon was further reflected by the improved bioavailability of DTG (AUC: 678.3 ± 10.07 µg/h/mL) in the NPs administered to mice when compared to the AUC of animals administered with pure DTG (405.29 ± 7 µg/h/mL). Altogether, the research findings showed that Chitosan-based NPs were ideal carriers for oral administration of DTG along with milk and exhibited great potential to enhance the bioavailability of the drug and treatment adherence for paediatric HIV patients.


Subject(s)
Chitosan , HIV Infections , Nanoparticles , Administration, Oral , Animals , Biological Availability , Chitosan/chemistry , Drug Carriers/chemistry , HIV Infections/drug therapy , Heterocyclic Compounds, 3-Ring , Humans , Mice , Milk , Nanoparticles/chemistry , Oxazines , Piperazines , Pyridones
3.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808019

ABSTRACT

One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.

SELECTION OF CITATIONS
SEARCH DETAIL
...