Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(42): 49589-49601, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34643365

ABSTRACT

The incidence and mortality of cancer demand more innovative approaches and combination therapies to increase treatment efficacy and decrease off-target side effects. We describe a boron-rich nanoparticle composite with potential applications in both boron neutron capture therapy (BNCT) and photothermal therapy (PTT). Our strategy is based on gold nanorods (AuNRs) stabilized with polyethylene glycol and functionalized with the water-soluble complex cobalt bis(dicarbollide) ([3,3'-Co(1,2-C2B9H11)2]-), commonly known as COSAN. Radiolabeling with the positron emitter copper-64 (64Cu) enabled in vivo tracking using positron emission tomography imaging. 64Cu-labeled multifunctionalized AuNRs proved to be radiochemically stable and capable of being accumulated in the tumor after intravenous administration in a mouse xenograft model of gastrointestinal cancer. The resulting multifunctional AuNRs showed high biocompatibility and the capacity to induce local heating under external stimulation and trigger cell death in heterogeneous cancer spheroids as well as the capacity to decrease cell viability under neutron irradiation in cancer cells. These results position our nanoconjugates as suitable candidates for combined BNCT/PTT therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Boron Neutron Capture Therapy , Gold/pharmacology , Nanotubes/chemistry , Photothermal Therapy , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Gold/administration & dosage , Gold/chemistry , Humans , Injections, Intravenous , Materials Testing , Mice , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Positron-Emission Tomography
2.
Biomater Sci ; 9(9): 3185-3208, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33949389

ABSTRACT

High-density lipoproteins (HDL) are key players in cholesterol metabolism homeostasis since they are responsible for transporting excess cholesterol from peripheral tissues to the liver. Imbalance in this process, due to either excessive accumulation or impaired clearance, results in net cholesterol accumulation and increases the risk of cardiovascular disease (CVD). Therefore, significant effort has been focused on the development of therapeutic tools capable of either directly or indirectly enhancing HDL-guided reverse cholesterol transport (RCT). More recently, in light of the emergence of precision nanomedicine, there has been renewed research interest in attempting to take advantage of the development of advanced recombinant HDL (rHDL) for both therapeutic and diagnostic purposes. In this review, we provide an update on the different approaches that have been developed using rHDL, focusing on the rHDL production methodology and rHDL applications in theranostics. We also compile a series of examples highlighting potential future perspectives in the field.


Subject(s)
Atherosclerosis , Lipoproteins, HDL , Atherosclerosis/diagnosis , Atherosclerosis/drug therapy , Biology , Cholesterol , Humans , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...