Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
RSC Adv ; 14(28): 19945-19952, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903673

ABSTRACT

With the increasing application of lithium-ion batteries, the demand for high energy density, high-rate performance and high stability lithium-ion batteries is becoming more and more urgent. Ti2CO2 MXene, as a two-dimensional material with multilayer atomic structure and multiple active sites, has great advantages in lithium-ion battery electrode materials. However, the original Ti2CO2 MXene has been unable to meet the requirements of lithium-ion batteries due to its semiconductor properties. Doping is an effective means to regulate the conductivity and electrochemical properties of Ti2CO2 and improve the capacity of lithium-ion batteries and other energy storage devices. Hence, we use first-principles calculations to study the effect of V atom doping on the adsorption and diffusion of Li on the MXene surface. The density of states (DOS) and partial density of states (PDOS) of TiVCO2 and Ti2CO2 MXene indicated the transition of their conductive types from semiconductors to conductors. In addition, we observed that TiVCO2 has higher electrical conductivity and ion transport speed than the original Ti2CO2 MXene, and at the same time, Li atoms can be adsorbed well on the surface of MXene and show a lower diffusion energy barrier. Therefore, TiVCO2 is expected to become the anode material for the next generation of lithium-ion batteries and has good lithium storage performance.

3.
Heliyon ; 10(9): e30458, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720732

ABSTRACT

Adsorption-desorption experiments of three heavy metal ions (i.e., lead, copper, cadmium) in silty soil were carried out at different temperatures, and the microscopic characteristics of silty soil loaded with the three heavy metal ions were analyzed. A one-dimensional soil column was used to discuss the influences of heavy metal ion types and concentrations on the soil moisture distribution and the migration level of different heavy metal ions, especially during the dynamic change process from an unsaturated state to a saturated state. Studies show that the adsorption of heavy metal ions onto silty soil is closely related to the mineral composition and functional groups in silty soil. In addition to physical adsorption, the adsorption of heavy metal ions is closely related to the hydrolysis reaction of mineral components such as kaolinite, calcite, dolomite, plagioclase and quartz. Under constant temperature, the types and concentrations of heavy metal ions play an important role in the moisture migration of unsaturated soil. In the presence of heavy metal ions, the penetration of lead ions is the greatest, followed by copper ions and then cadmium ions. The greater the ion concentration is, the stronger the penetration of heavy metal ions in silty soils.

4.
Curr Biol ; 34(12): 2594-2605.e7, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38781957

ABSTRACT

The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.


Subject(s)
DNA, Ancient , Genome, Human , Human Migration , Humans , DNA, Ancient/analysis , East Asian People/genetics , Genetics, Population , Human Migration/history , Tibet
5.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38788719

ABSTRACT

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Subject(s)
Glioblastoma , Membrane Glycoproteins , Receptors, Immunologic , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Humans , Animals , Mice , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Myeloid Cells/metabolism , Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Cell Line, Tumor , Mice, Inbred C57BL , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism
6.
Front Neurosci ; 18: 1362239, 2024.
Article in English | MEDLINE | ID: mdl-38699678

ABSTRACT

Introduction: Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods: In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results: Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion: Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.

7.
Front Cell Neurosci ; 18: 1352630, 2024.
Article in English | MEDLINE | ID: mdl-38572075

ABSTRACT

Introduction: Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods: In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results: The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion: Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.

8.
Nat Cancer ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609488

ABSTRACT

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

9.
Head Neck ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671587

ABSTRACT

BACKGROUND: This study evaluated health-related quality of life (HRQoL) in the RATIONALE-309 (NCT03924986) intent-to-treat (ITT) population and in a subgroup of patients with liver metastases. METHODS: Patients were randomized 1:1 to tislelizumab + chemotherapy or placebo + chemotherapy. As the secondary endpoint, HRQoL was evaluated using seven selected scores from the EORTC QLQ-C30 and QLQ Head and Neck Cancer module (QLQ-H&N35). RESULTS: Of 263 randomized patients in the ITT population (tislelizumab + chemotherapy n = 131, placebo + chemotherapy n = 132), 43% had liver metastases (tislelizumab + chemotherapy n = 56; placebo + chemotherapy n = 57). No differences in change in selected scores on the QLQ-C30 from baseline to cycle 4 or cycle 8 were observed for the ITT or liver metastases subgroup. No differences in selected QLQ-H&N35 scores were observed between the arms from baseline to cycle 4. In the ITT population and the liver metastases subgroup, a greater reduction from baseline to cycle 8 was observed in the tislelizumab + chemotherapy arm than the placebo + chemotherapy arm in QLQ-H&N35 pain score. At cycle 8 in the liver metastases subgroup, the tislelizumab + chemotherapy arm experienced greater improvement in the QLQ-H&N35 senses problems score than the placebo + chemotherapy arm. Differences in time to deterioration between arms were not observed. CONCLUSIONS: The current findings, along with improved survival and favorable safety, suggests that tislelizumab + chemotherapy represents a potential first-line treatment for recurrent or metastatic nasopharyngeal cancer.

10.
Food Chem X ; 22: 101391, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38681231

ABSTRACT

Sensory analysis and untargeted lipidomics were employed to study the impact of phospholipase B (PLB) on lipid oxidation and flavor in steamed sturgeon meat, revealing the inherent relationship between lipid oxidation and flavor regulation. The research verified that PLB effectively suppresses fat oxidation and improves the overall taste of steamed sturgeon meat. Furthermore, the PLB group identified 52 compounds, and the content of odor substances such as isoamyl alcohol and hexanal was reduced compared with other groups. Finally, lipid substances containing eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were screened out from 32 kinds of differential phospholipids. Through Pearson correlation analysis, it was observed that certain differential phospholipids such as PC (22:6) and PC (22:5) exhibited varying correlations with odor substances like hexanal and isovaleraldehyde. These findings suggest that PLB specifically affects certain phospholipids, leading to the production of distinct volatile substances through oxidative degradation.

11.
Heliyon ; 10(7): e28769, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38590908

ABSTRACT

Objective: To investigate the effectiveness of a multimodal deep learning model in predicting tumor budding (TB) grading in rectal cancer (RC) patients. Materials and methods: A retrospective analysis was conducted on 355 patients with rectal adenocarcinoma from two different hospitals. Among them, 289 patients from our institution were randomly divided into an internal training cohort (n = 202) and an internal validation cohort (n = 87) in a 7:3 ratio, while an additional 66 patients from another hospital constituted an external validation cohort. Various deep learning models were constructed and compared for their performance using T1CE and CT-enhanced images, and the optimal models were selected for the creation of a multimodal fusion model. Based on single and multiple factor logistic regression, clinical N staging and fecal occult blood were identified as independent risk factors and used to construct the clinical model. A decision-level fusion was employed to integrate these two models to create an ensemble model. The predictive performance of each model was evaluated using the area under the curve (AUC), DeLong's test, calibration curve, and decision curve analysis (DCA). Model visualization Gradient-weighted Class Activation Mapping (Grad-CAM) was performed for model interpretation. Results: The multimodal fusion model demonstrated superior performance compared to single-modal models, with AUC values of 0.869 (95% CI: 0.761-0.976) for the internal validation cohort and 0.848 (95% CI: 0.721-0.975) for the external validation cohort. N-stage and fecal occult blood were identified as clinically independent risk factors through single and multivariable logistic regression analysis. The final ensemble model exhibited the best performance, with AUC values of 0.898 (95% CI: 0.820-0.975) for the internal validation cohort and 0.868 (95% CI: 0.768-0.968) for the external validation cohort. Conclusion: Multimodal deep learning models can effectively and non-invasively provide individualized predictions for TB grading in RC patients, offering valuable guidance for treatment selection and prognosis assessment.

12.
Angew Chem Int Ed Engl ; 63(27): e202404637, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38644436

ABSTRACT

Application of silicon-based anodes is significantly challenged by low initial Coulombic efficiency (ICE) and poor cyclability. Traditional pre-lithiation reagents often pose safety concerns due to their unstable chemical nature. Achieving a balance between water-stability and high ICE in prelithiated silicon is a critical issue. Here, we present a lithium-enriched silicon/graphite material with an ultra-high ICE of ≥110 % through a high-stable lithium pre-storage methodology. Lithium pre-storage prepared a nano-drilled graphite material with surficial lithium functional groups, which can form chemical bonds with adjacent silicon during high-temperature sintering. This results in an unexpected O-Li-Si interaction, leading to in situ pre-lithiation of silicon nanoparticles and providing high stability in air and water. Additionally, the lithium-enriched silicon/graphite materials impart a combination of high ICE, high specific capacity (620 mAh g-1), and long cycling stability (>400 cycles). This study opens up a promising avenue for highly air- and water-stable silicon anode prelithiation methods.

13.
Adv Sci (Weinh) ; 11(22): e2310005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572525

ABSTRACT

Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.

14.
J Agric Food Chem ; 72(17): 10076-10088, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38629202

ABSTRACT

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.


Subject(s)
Fish Proteins , Fishes , Osteoblasts , Ovary , Oxidative Stress , Peptides , Protein Hydrolysates , Animals , Protein Hydrolysates/chemistry , Protein Hydrolysates/pharmacology , Oxidative Stress/drug effects , Female , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Peptides/chemistry , Peptides/pharmacology , Peptides/isolation & purification , Fish Proteins/chemistry , Fish Proteins/pharmacology , Fish Proteins/metabolism , Ovary/drug effects , Ovary/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Cell Line , Cell Survival/drug effects , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/chemistry , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Tandem Mass Spectrometry
15.
Nature ; 629(8010): 193-200, 2024 May.
Article in English | MEDLINE | ID: mdl-38600383

ABSTRACT

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Subject(s)
Androgens , Cells , Sex Characteristics , Single-Cell Analysis , Transcriptome , Animals , Female , Humans , Male , Mice , Androgens/metabolism , Androgens/pharmacology , Antigen Presentation/drug effects , Antigen Presentation/genetics , Immunity, Innate , Lymphocytes/metabolism , Lymphocytes/cytology , Lymphocytes/immunology , Lymphocytes/drug effects , Mice, Inbred C57BL , Transcriptome/drug effects , Transcriptome/genetics , UK Biobank , Cells/drug effects , Cells/immunology , Cells/metabolism
16.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38530274

ABSTRACT

To meet the demand for the accurate measurements of the dynamic pressure of a shock wave, a composite dynamic pressure sensor design method is proposed based on the formation mechanism, propagation characteristics, special testing environment of the dynamic pressure, and Pitot tube structure. The dynamic pressure of the shock wave is evaluated by the total pressure and static pressure units installed in the composite sensor. FLUENT simulation software was used to analyze the aerodynamic characteristics of the dynamic pressure sensor, and parameters such as the structural size and inlet position of the sensor were determined. In response to the special experimental environment of the shock wave, the requirements for the dynamic pressure measurements under damage conditions were analyzed, and a dynamic pressure testing system was established. Dynamic pressure tests with four 2,4,6-trinitrotoluene [C7H5(NO2)3] equivalents of 1, 2, 15, and 20 kg were carried out. The experimental results show that the proposed sensor design method can accurately and effectively measure the dynamic pressure signal, and the dynamic pressure gain multiple decreases with an increase in the proportional distance. This provides an effective testing method for evaluating the dynamic pressure damage effect of ammunition systems.

17.
Biochem Biophys Rep ; 37: 101647, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304574

ABSTRACT

Objectives: Osteoarthritis (OA) is characterized by a high prevalence, poor prognosis, and a propensity to lead to disability. Despite the availability of standard therapies, they are associated with potential side effects and don't provide a complete cure for patients. Consequently, there is an urgent demand for the development of novel drugs. Method: The gene expression profiles (GSE64394, GSE178557 and GSE215039) of normal and OA chondrocytes samples were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by the "LIMMA" R package. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were conducted using the R package clusterProfiler. A protein-protein (PPI) interaction network was performed to identify hub genes by using the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Small molecule compounds linked to OA were predicted through the NetworkAnalyst platform. Finally, molecular docking was conducted using AutoDock and Pymol software. Results: We identified 98 DEGs primarily implicated in endochondral ossification, extracellular matrix degradation, and Wnt signaling pathways. 23 DEGs were closely associated with OA, and 10 hub genes were found to be potential drug targets for OA. Two new targeted compounds, tetrachlorodibenzodioxin (TCDD) and valproic acid (VPA), were screened. And they both exhibited strong binding affinity to their respective targets. Conclusions: Reducing exposure to TCDD could be a crucial strategy in preventing OA, and VPA has gained recognition as a novel drug candidate for OA treatment.

18.
Food Res Int ; 178: 113903, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309899

ABSTRACT

The volatile and non-volatile compounds were monitored to investigate the microbial evolution associated with the characteristic flavors for sturgeon caviar during refrigeration. The results revealed that the composition of volatile compounds changed significantly with prolonged refrigeration time, especially hexanal, nonanal, phenylacetaldehyde, 3-methyl butyraldehyde, and 1-octen-3-ol. The nonvolatile metabolites were mainly represented by the increase of bitter amino acids (Thr. Ser, Gly, Ala, and Pro) and a decrease in polyunsaturated fatty acids, especially an 18.63 % decrease in 5 months of storage. A total of 332 differential metabolites were mainly involved in the biosynthetic metabolic pathways of α-linolenic acid, linoleic acid, and arachidonic acid. The precursors associated with flavor evolution were mainly phospholipids, including oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. The most abundant at the genus level was Serratia, followed by Arsenophnus, Rhodococcus, and Pseudomonas, as obtained by high-throughput sequencing. Furthermore, seven core microorganisms were isolated and characterized from refrigerated caviar. Among them, inoculation with Mammalian coccus and Bacillus chrysosporium restored the flavor profile of caviar and enhanced the content of nonvolatile precursors, contributing to the characteristic aroma attributes of sturgeon caviar. The study presents a theoretical basis for the exploitation of technologies for quality stabilization and control of sturgeon caviar during storage.


Subject(s)
Fatty Acids, Unsaturated , Fishes , Animals , Phospholipids , Fish Products , Linoleic Acid , Mammals
19.
Nat Commun ; 15(1): 1306, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378680

ABSTRACT

Traffic light optimization is known to be a cost-effective method for reducing congestion and energy consumption in urban areas without changing physical road infrastructure. However, due to the high installation and maintenance costs of vehicle detectors, most intersections are controlled by fixed-time traffic signals that are not regularly optimized. To alleviate traffic congestion at intersections, we present a large-scale traffic signal re-timing system that uses a small percentage of vehicle trajectories as the only input without reliance on any detectors. We develop the probabilistic time-space diagram, which establishes the connection between a stochastic point-queue model and vehicle trajectories under the proposed Newellian coordinates. This model enables us to reconstruct the recurrent spatial-temporal traffic state by aggregating sufficient historical data. Optimization algorithms are then developed to update traffic signal parameters for intersections with optimality gaps. A real-world citywide test of the system was conducted in Birmingham, Michigan, and demonstrated that it decreased the delay and number of stops at signalized intersections by up to 20% and 30%, respectively. This system provides a scalable, sustainable, and efficient solution to traffic light optimization and can potentially be applied to every fixed-time signalized intersection in the world.

20.
Nature ; 627(8004): 586-593, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355797

ABSTRACT

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Subject(s)
Carcinoma, Hepatocellular , Genome, Human , High-Throughput Nucleotide Sequencing , Liver Neoplasms , Mutation , Whole Genome Sequencing , Humans , Aristolochic Acids/metabolism , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , China , Chromothripsis , Disease Progression , DNA, Circular/genetics , East Asian People/genetics , Evolution, Molecular , Genome, Human/genetics , Hepatitis B virus/genetics , INDEL Mutation/genetics , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Mutation/genetics , Neoplasm Metastasis/genetics , Open Reading Frames/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...