Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Arch Anim Nutr ; 78(1): 60-77, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38488818

ABSTRACT

This study was performed to investigate the nitrogen (N) and carbohydrate digestive traits of grazing heifers. The experiment was carried out at the Federal University of Lavras. The treatments were a Marandu palisadegrass (Urochloa brizantha [Syn, Brachiaria brizantha] Stapf. A. Rich. cv. Marandu) monoculture fertilised with 150 kg N/[ha ∙ year] (FP) or Marandu palisadegrass mixed pasture with forage peanut (MP). The pastures were grazed by six rumen-cannulated zebu heifers. A double cross-over design was used in four periods. Nutritive value, intake and apparent digestibility of forage, ruminal traits and kinetics and N balance were evaluated. Apparent total-tract digestibility of dry matter (DM) and neutral detergent fibre (NDF) were greater for FP than for MP. There was no effect in apparent total-tract digestibility of N. The estimated intestinal digestibility of nutrients was greater on MP than FP. Even though N intake and faecal N output were greater on MP than FP, there was no effect in urine N output. The N balance tended to be greater on MP than FP. The forage peanut, which contains condensed tannins, decreased ruminal fibre degradation, apparent digestibility and ruminal protein degradation, increased N flow from the rumen. Inclusion of forage peanut in the mixed pasture decreased the ruminal fibre degradability but increased N retention by the animals.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Digestion , Rumen , Animals , Cattle/physiology , Digestion/physiology , Animal Feed/analysis , Female , Diet/veterinary , Rumen/physiology , Rumen/metabolism , Nitrogen/metabolism , Dietary Proteins/metabolism , Cross-Over Studies , Fertilizers/analysis , Nutritive Value , Arachis/chemistry , Dietary Carbohydrates/analysis , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Brachiaria/chemistry , Brachiaria/physiology , Poaceae/chemistry
2.
J Environ Qual ; 49(6): 1453-1466, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33058171

ABSTRACT

Cattle excreta and nitrogen (N) fertilizer deposited on tropical grasslands are important sources of ammonia (NH3 ) emission. We conducted three field trials (wet, intermediate, and dry conditions) to quantify NH3 emissions from urea fertilizer and simulated excretions of heifer urine and dung on warm-climate grasslands in Brazil. Heifer excreta were derived from pastures of palisadegrass [Urochloa brizantha (Hochst. ex A. Rich.) R. D. Webster 'Marandu'] under three forms of N supply (without or with N fertilization [0 or 150 kg N ha-1  yr-1 ] or mixed with forage peanut [Arachis pintoi 'Amarillo']). Cumulative NH3 -N emissions across rainfall conditions were 7.6-16.6% (mean, 11.7%) for urine, 1.4-2.9% (mean, 2.0%) for dung, and 11.2-20.5% (mean, 14.8%) for urea. Ammonia loss from urine was significantly greater than from dung under all rainfall conditions. Emission from urine and dung differed from those when urea was applied on palisadegrass. There were greater NH3 emissions from urine in the wetter times of the year. Heifer excreta from N-fertilized pasture had greater NH3 emission than excreta from the grass-legume mixture and unfertilized palisadegrass. Urea applied on palisadegrass presented greater NH3 emissions in wet rainfall conditions compared with dry conditions but did not differ from intermediate conditions. Our study showed that N-fertilized systems increase N losses as NH3 emission from excreta, and emissions from urea fertilizer must be included in this system. Heifer excreta and urea fertilizer deposited on warm-climate grasslands increased the NH3 emissions mainly under wet conditions.


Subject(s)
Ammonia , Nitrogen , Affect , Ammonia/analysis , Animals , Brazil , Cattle , Female , Nitrogen/analysis , Urea
3.
Acta amaz ; 50(3): 213-222, jul. - set. 2020.
Article in English | LILACS | ID: biblio-1118827

ABSTRACT

The ruderal babassu palm (Attalea speciosa) is expanding on large areas of degraded Amazon landscapes. Decomposition of leaves and roots is in the center of plant:soil interactions. We evaluated decomposition and nutrient concentrations of leaves and fine roots of babassu in comparison with two exotic reference species, Acacia mangium (slow degradability) and Leucaena leucocephala (fast degradability), in a 138-day litterbag assay carried out in secondary forest stands of different age and babassu abundance. We chose 4-mm over 2-mm mesh litterbags based on a pilot study. Babassu leaves degraded slower than leaves of A. mangium and L. leucocephala, and also had lower nitrogen, phosphorus and calcium concentrations in all stages of decomposition. By contrast, potassium concentrations in babassu leaves were higher than in both reference species at 0 and 50 days. Roots of all three species decomposed slower than leaves. Compared to the leaves, both biomass loss and nutrient concentrations differed less between babassu and reference-species roots, except for lower nitrogen concentration in babassu roots. Leaf-litter decomposition of all three species was significantly faster in old than in young secondary forest, suggesting an acceleration of decomposition along succession. Babassu leaves decomposed faster in old babassu-dominated than non-dominated secondary forest, pointing to the existence of specialized decomposer communities in babassu-dominated stands. (AU)


Subject(s)
Soil , Nutrients , Amazonian Ecosystem , Acacia , Organic Matter
4.
Animals (Basel) ; 10(4)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340205

ABSTRACT

The objective was to evaluate milk production, N2-fixation and N transfer, forage yield and composition (under two cutting intervals) in a silvopastoral system (SPS) with Leucaena leucocephala-Megathyrsus maximus and M. maximus-monoculture (MMM) with crossbred cows in a completely randomized design. Forage yield in the SPS was 6490 and 6907 kg DM ha-1 for cutting intervals (CI) of 35 and 50 days. Forage yield for the MMM was 7284 and 10,843 kg DM ha-1, and forage crude protein (CP) was 29.0% and 26.1% for L. leucocephala, harvested at 35 and 50 days, respectively. CP for the associated M. maximus was 9.9% and 7.8% for CI 35 and 50 days, respectively, and for MMM was 7.4% and 8.4%, harvested at 35 and 50 days. Milk production was 4.7 kg cow-1 day-1 for cows grazing MMM and 7.4 kg cow-1 day-1 under SPS. Nitrogen fixation in L. leucocephala (%Ndfa) was estimated to be 89% and 95%, at 35 and 50 days, with an N2 transfer to the associated grass of 34.3% and 52.9%. SPS has the potential to fix and transfer important amounts of N2 to the associated grass, and increase forage CP content and milk production.

5.
J Anim Sci ; 97(11): 4625-4634, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31588955

ABSTRACT

Livestock production systems are an essential agribusiness activity in Brazil, but a critical challenge of Brazilian farmers is to maintain the equilibrium of the ecosystem, using herbage resources efficiently with a minimum impact on the environment. Nitrogen (N) fertilization and the inclusion of forage legumes into tropical grass pastures are management strategies which increase the productivity and nutritive value of pastures and may also affect methane (CH4) production by ruminants. The objective of this study was to examine the effects of either fertilizing palisade grass pastures with N or including the forage peanut (Arachis pintoi) into grass pastures on enteric CH4 emission, microbial protein production in the rumen via purine derivatives in the urine, and N balance. Twenty-one nonlactating crossbred dairy heifers were used in a completely randomized design with 3 treatments. The treatments consisted of pastures of palisade grass without N fertilization (control), fertilized with urea (fertilized), and palisade grass mixed with forage peanut (mixed). Seven animals (replications) were used to evaluate dry matter intake, digestibility, CH4 emission, urea, purine derivatives, and volume of urine, and N ingestion and excretion. Four paddocks (replications) were used to measure herbage mass; morphological, botanical, and chemical composition of herbage; and herbage allowance. The CH4 emissions were determined using the sulfur hexafluoride (SF6) tracer gas technique. The efficiency of N utilization (ENU) was calculated using the N balance data. Crude protein (CP) concentration of herbage increased with fertilization or legumes inclusion (P < 0.0001) while neutral detergent fiber (NDF) concentration decreased (P = 0.0355). The leaf allowance was higher in the fertilized treatment (P = 0.0294). Only uric acid excretion increased with N fertilization (P = 0.0204). The ENU was not affected by fertilized or mixed compared to control and averaged 55% (P = 0.8945). The enteric CH4 production was similar between treatments and averaged 129 g/d (P = 0.3989). We concluded that the changes in chemical composition of herbage provided by N fertilization or the inclusion of the legume showed no reduction in enteric CH4 emissions, but the ENU was more significant than previous studies with palisade grass, suggesting that different management strategies might alter the ENU under grazing conditions.


Subject(s)
Animal Feed/analysis , Arachis , Cattle/physiology , Methane/metabolism , Nitrogen/metabolism , Poaceae , Animals , Brazil , Dairying , Diet/veterinary , Dietary Fiber/metabolism , Ecosystem , Fabaceae , Female , Fertilizers , Nutritive Value , Rumen/metabolism , Seasons
6.
Tree Physiol ; 31(2): 139-49, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21378065

ABSTRACT

The main challenges faced in the reclamation of severely degraded lands are in the management of the systems and finding plant species that will grow under the harsh conditions common in degraded soils. This is especially important in extremely adverse situations found in some substrates from mining activities or soils that have lost their upper horizons. Under these conditions, recolonization of the area by native vegetation through natural succession processes may be extremely limited. Once the main physical and chemical factors restrictive to plant growth are corrected or attenuated, the introduction of leguminous trees able to form symbioses with nodulating N2-fixing bacteria and arbuscular mycorrhizal fungi constitutes an efficient strategy to accelerate soil reclamation and initiate natural succession. These symbioses give the legume species a superior capacity to grow quickly in poor substrates and to withstand the harsh conditions presented in degraded soils. In this article we describe several successful results in Brazil using N2-fixing legume tree species for reclamation of areas degraded by soil erosion, construction and mining activities, emphasizing the potential of the technique to recover soil organic matter levels and restore ecosystem biodiversity and other environmental functions.


Subject(s)
Fabaceae/microbiology , Nitrogen Fixation/physiology , Soil/chemistry , Trees/growth & development , Brazil , Mining , Mycorrhizae/metabolism , Rhizobium/physiology , Soil Microbiology , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Symbiosis/physiology , Trees/metabolism
7.
Braz. j. microbiol ; 40(4): 866-878, Oct.-Dec. 2009. graf, tab
Article in English | LILACS | ID: lil-528169

ABSTRACT

The species Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and H. rubrisubalbicans are endophytic N2-fixing [diazotrophic] bacteria which colonise not only roots, but also the aerial tissue of sugar cane. However, the technique most commonly used to quantify the populations of these microbes in plants is by culturing serial dilutions of macerates of plant tissues in N free semi-solid media which are only semi-selective for the species/genera [the Most Probable Number (MPN) Technique] and each culture must be further subjected to several tests to identify the isolates at the species level. The use of species-specific polyclonal antibodies with the indirect ELISA (enzyme-linked immunosorbent assay) can be an alternative which is rapid and specific to quantify these populations of bacteria. This study was performed to investigate the viability of adapting the indirect ELISA technique to quantify individually the populations of these three species of diazotroph within the root and shoot tissues of sugarcane. The results showed that species-specific polyclonal antibodies could be obtained by purifying sera in protein-A columns which removed non-specific immuno-globulins. It was possible to quantify the three bacterial species in the Brazilian sugarcane variety SP 70-1143 in numbers above 10(5) cells per g fresh weight in roots, rhizomes and leaves. The numbers of the different bacterial species evaluated using the ELISA technique were found to be higher than when the same populations were evaluated using the MPN technique, reaching 1400 times greater for G. diazotrophicus and 225 times greater for Herbaspirillum spp. These results constitute the first quantification of Herbaspirillum using immunological techniques.


Subject(s)
Antibodies/analysis , Gluconacetobacter/isolation & purification , Herbaspirillum/isolation & purification , Nitrogen Fixation , Saccharum , Enzyme-Linked Immunosorbent Assay , Immunologic Techniques , Methods
8.
Braz J Microbiol ; 40(4): 866-78, 2009 Oct.
Article in English | MEDLINE | ID: mdl-24031435

ABSTRACT

The species Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae and H. rubrisubalbicans are endophytic N2-fixing [diazotrophic] bacteria which colonise not only roots, but also the aerial tissue of sugar cane. However, the technique most commonly used to quantify the populations of these microbes in plants is by culturing serial dilutions of macerates of plant tissues in N free semi-solid media which are only semi-selective for the species/genera [the Most Probable Number (MPN) Technique] and each culture must be further subjected to several tests to identify the isolates at the species level. The use of species-specific polyclonal antibodies with the indirect ELISA (enzyme-linked immunosorbent assay) can be an alternative which is rapid and specific to quantify these populations of bacteria. This study was performed to investigate the viability of adapting the indirect ELISA technique to quantify individually the populations of these three species of diazotroph within the root and shoot tissues of sugarcane. The results showed that species-specific polyclonal antibodies could be obtained by purifying sera in protein-A columns which removed non-specific immuno-globulins. It was possible to quantify the three bacterial species in the Brazilian sugarcane variety SP 70-1143 in numbers above 10(5) cells per g fresh weight in roots, rhizomes and leaves. The numbers of the different bacterial species evaluated using the ELISA technique were found to be higher than when the same populations were evaluated using the MPN technique, reaching 1400 times greater for G. diazotrophicus and 225 times greater for Herbaspirillum spp. These results constitute the first quantification of Herbaspirillum using immunological techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...