Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990690

ABSTRACT

Environmentally friendly InP-based quantum dots (QDs) are promising for light-emitting diodes (LEDs) and display applications. So far, the synthesis of highly emitting InP-based QDs via safe and economically viable amine-phosphine remains a challenge. Herein, we report the synthesis of amine-phosphine based InP/ZnSe/ZnS QDs by introducing an alloyed oxidation-free In-ZnSe transition layer (TL) at the core-shell interface. The TL not only has the essential function of preventing oxidation of the core and relieving interfacial strain but also results in oriented epitaxial growth of shell. The alloyed TL significantly mitigates the nonradiative recombination at core-shell interfacial trap states, thereby boosting the photoluminescence (PL) efficiency of the QDs up to 98%. Also, the Auger recombination is suppressed, extending the biexciton lifetime from 60 to 100 ps. The electroluminescence device based on the InP-based QDs shows a high external quantum efficiency over 10%, further demonstrating high quality QDs synthesized by this process.

2.
Nano Lett ; 24(15): 4454-4461, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572779

ABSTRACT

Colloidal quantum well (CQW) based light emitting diodes (LEDs) possess extra-high theoretical efficiency, but their performance still lags far behind conventional LEDs due to severe exciton quenching and unbalanced charge injection. Herein, we devised a gradient composition CdxZn1-xS shell to address these issues. The epitaxial shell with gradient composition was achieved through controlling competition between Cd2+ and Zn2+ cations to preferentially bind to the anions S2-. Thus, exciton quenching was suppressed greatly by passivating defects and reducing nonradiative recombination, thereby achieving near-unity photoluminescence quantum yield (PLQY). The gradient energy level of the shell reduced the hole injection barriers and increased the hole injection efficiency to balance the charge injection of LEDs. As a result, the LEDs achieved a high external quantum efficiency (EQE) of 22.83%, luminance of 111,319 cd/m2 and a long operational lifetime (T95@100 cd/m2) over 6,500 h, demonstrating the state-of-the-art performance for the CQW based LEDs.

3.
Opt Express ; 29(8): 12169-12178, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984982

ABSTRACT

Quantum dot light-emitting diodes (QD-LEDs) have made great development in the performance. However, the efficiency droop at high brightness limits their applications in daylight displays and outdoor lightings. Herein, we systematically regulate the shell structure and composition, and the results indicate that CdSe-based QDs with ZnSe interlayer and thinner ZnSeS outermost layer as emitting layers (EML) enable high-performance QD-LEDs. Accordingly, the devices exhibit peak external quantum efficiency (EQE) of 22.9% with corresponding brightness of 67,840 cd/m2, and this efficiency can be still maintained > 90% of the maximum value even at 100,000 cd/m2, which satisfies the requirements for high-brightness display and lighting applications. This strong performance is mainly attributed to the ZnSe/ZnSeS graded shell that smooths the injection barrier between QD EML and the adjacent hole transport layers (HTL), and then improves the hole injection and charge injection balance, in particular at the high luminance and/or at high current density.

SELECTION OF CITATIONS
SEARCH DETAIL
...