Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 13: 3425-3440, 2018.
Article in English | MEDLINE | ID: mdl-29942128

ABSTRACT

BACKGROUND AND OBJECTIVE: The modulus of carbon fiber-reinforced polyether ether ketone (CFR-PEEK), a composite containing layers of carbon fiber sheets, can be precisely controlled to match bone. However, CFR-PEEK is biologically inert and cannot promote bone apposition. The objective of this study was to investigate whether graphene modification could enhance the bioactivity of CFR-PEEK. METHODS AND RESULTS: In vitro, the proliferation and differentiation of rat bone marrow stromal cells on scaffolds were quantified via cell-counting kit-8 assay and Western blotting analysis of osteoblast-specific proteins. Graphene modification significantly promoted bone marrow stromal cell proliferation and accelerated induced differentiation into osteogenic lineages compared to cells seeded onto nongraphene-coated CFR-PEEK. An in vivo rabbit extraarticular graft-to-bone healing model was established. At 4, 8, and 12 weeks after surgery, microcomputed tomography analyses and histological observations revealed significantly better microstructural parameters and higher average mineral apposition rates for graphene-modified CFR-PEEK implants than CFR-PEEK implants (P<0.05). van Gieson staining indicated more new bone was formed around graphene-modified CFR-PEEK implants than CFR-PEEK implants. CONCLUSION: Graphene may have considerable potential to enhance the bioactivity and osseointegration of CFR-PEEK implants for clinical applications.


Subject(s)
Carbon/chemistry , Graphite/chemistry , Ketones/chemistry , Polyethylene Glycols/chemistry , Animals , Benzophenones , Biomechanical Phenomena , Carbon Fiber , Cell Adhesion , Cell Differentiation , Cell Proliferation , Cell Separation , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Polymers , Rabbits , Rats, Sprague-Dawley , Surface Properties , Tissue Scaffolds/chemistry , X-Ray Microtomography
2.
Med Eng Phys ; 33(6): 764-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21354360

ABSTRACT

Truly representative architectural parameters of trabeculea can be extremely difficult to achieve based on scanning images because of variable porosity and distribution of trabeculae within the specific overall scanned volume of bone. Accordingly, in present study different selective volume of interests, measured from centroid of µ-CT scanned human vertebral body, were analyzed to determine the architectural parameters (BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp) of trabeculae within these volumes and to suggest an optimal volume for representative architectural parameters of the overall scanned volume. Nonlinear curve fitting method was also applied to obtain the correlation between the parameters and the volume of interests. The results show different volumes of interests give different morphological indices of BV/TV, BS/BV, Tb.N and Tb.Sp within a specific scanned vertebral body. Tb.Th shows relatively small variation (0.8%) even with sample volume of less than (2mm)(3). Statistical analysis shows that with sample volume of less than (6mm)(3), significant different in the measured BV/TV comparing against the control group. Tb.N and Tb.Sp show significant different values against the control group for volume of interest less than (4mm)(3) and (5mm)(3), respectively. However, no significant differences were observed in the indices of BS/BV and Tb.Th. Present study shows that an optimal volume of interests of greater than (6mm)(3) be selected to predict the architectural parameters of trabeculae of human vertebral bodies.


Subject(s)
Bone and Bones/diagnostic imaging , X-Ray Microtomography/methods , Adult , Bone Density , Bone and Bones/pathology , Cadaver , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/pathology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...