Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
EMBO J ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750259

ABSTRACT

Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657912

ABSTRACT

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.


Subject(s)
DNA Glycosylases , DNA Repair Enzymes , Phosphoric Monoester Hydrolases , Reactive Oxygen Species , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Humans , Female , Reactive Oxygen Species/metabolism , Animals , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , DNA Glycosylases/metabolism , DNA Glycosylases/antagonists & inhibitors , DNA Glycosylases/genetics , Mice , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/genetics , Guanine/analogs & derivatives , Guanine/pharmacology , Cell Line, Tumor , DNA Repair/drug effects , Mice, Nude , Xenograft Model Antitumor Assays , Drug Synergism , HeLa Cells , Oxidative Stress/drug effects
3.
Free Radic Biol Med ; 210: 65-74, 2024 01.
Article in English | MEDLINE | ID: mdl-37977212

ABSTRACT

Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Reactive Oxygen Species/metabolism , Exercise , DNA/metabolism , Guanine/metabolism
4.
Redox Biol ; 69: 102999, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150992

ABSTRACT

Ferroptosis is inhibited by glutathione peroxidase 4 (GPX4), an antioxidant enzyme that uses reduced glutathione (GSH) as a cofactor to detoxify lipid hydroperoxides. As a selenoprotein, the core function of GPX4 is the thiol-dependent redox reaction. In addition to GSH, other small molecules such as cysteine and homocysteine also contain thiols; yet, whether GPX4 can exploit cysteine and homocysteine to directly detoxify lipid hydroperoxides and inhibit ferroptosis has not been addressed. In this study, we found that cysteine and homocysteine inhibit ferroptosis in a GPX4-dependent manner. However, cysteine inhibits ferroptosis independent of GSH synthesis, and homocysteine inhibits ferroptosis through non-cysteine and non-GSH pathway. Furthermore, we used molecular docking and GPX4 activity analysis to study the binding patterns and affinity between GPX4 and GSH, cysteine, and homocysteine. We found that besides GSH, cysteine and homocysteine are also able to serve as substrates for GPX4 though the affinities of GPX4 with cysteine and homocysteine are lower than that with GSH. Importantly, GPX family and the GSH synthetase pathway might be asynchronously evolved. When GSH synthetase is absent, for example in Flexibacter, the fGPX exhibits higher affinity with cysteine and homocysteine than GSH. Taken together, the present study provided the understanding of the role of thiol-dependent redox systems in protecting cells from ferroptosis and propose that GSH might be a substitute for cysteine or homocysteine to be used as a cofactor for GPX4 during the evolution of aerobic metabolism.


Subject(s)
Cysteine , Ferroptosis , Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Molecular Docking Simulation , Homocysteine , Lipid Peroxides , Glutathione/metabolism , Sulfhydryl Compounds , Ligases
5.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958890

ABSTRACT

Over the course of long-term evolution, cells have developed intricate defense mechanisms in response to DNA damage; these mechanisms play a pivotal role in maintaining genomic stability. Defects in the DNA damage response pathways can give rise to various diseases, including cancer. The DNA damage response (DDR) system is instrumental in safeguarding genomic stability. The accumulation of DNA damage and the weakening of DDR function both promote the initiation and progression of tumors. Simultaneously, they offer opportunities and targets for cancer therapeutics. This article primarily elucidates the DNA damage repair pathways and the progress made in targeting key proteins within these pathways for cancer treatment. Among them, poly (ADP-ribose) polymerase 1 (PARP1) plays a crucial role in DDR, and inhibitors targeting PARP1 have garnered extensive attention in anticancer research. By delving into the realms of DNA damage and repair, we aspire to explore more precise and effective strategies for cancer therapy and to seek novel avenues for intervention.


Subject(s)
DNA Repair , Neoplasms , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Damage , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Genomic Instability
6.
J Biol Chem ; 299(11): 105308, 2023 11.
Article in English | MEDLINE | ID: mdl-37778730

ABSTRACT

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Subject(s)
DNA Glycosylases , NF-kappa B , Animals , DNA/metabolism , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Mammals/metabolism , Mitogens , NF-kappa B/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Humans , Mice , Cell Line , Mice, Knockout
7.
Front Immunol ; 14: 1161160, 2023.
Article in English | MEDLINE | ID: mdl-37600772

ABSTRACT

Interferons (IFNs) are secreted cytokines with the ability to activate expression of IFN stimulated genes that increase resistance of cells to virus infections. Activated transcription factors in conjunction with chromatin remodelers induce epigenetic changes that reprogram IFN responses. Unexpectedly, 8-oxoguanine DNA glycosylase1 (Ogg1) knockout mice show enhanced stimuli-driven IFN expression that confers increased resistance to viral and bacterial infections and allergen challenges. Here, we tested the hypothesis that the DNA repair protein OGG1 recognizes 8-oxoguanine (8-oxoGua) in promoters modulating IFN expression. We found that functional inhibition, genetic ablation, and inactivation by post-translational modification of OGG1 significantly augment IFN-λ expression in epithelial cells infected by human respiratory syncytial virus (RSV). Mechanistically, OGG1 bound to 8-oxoGua in proximity to interferon response elements, which inhibits the IRF3/IRF7 and NF-κB/RelA DNA occupancy, while promoting the suppressor NF-κB1/p50-p50 homodimer binding to the IFN-λ2/3 promoter. In a mouse model of bronchiolitis induced by RSV infection, functional ablation of OGG1 by a small molecule inhibitor (TH5487) enhances IFN-λ production, decreases immunopathology, neutrophilia, and confers antiviral protection. These findings suggest that the ROS-generated epigenetic mark 8-oxoGua via its reader OGG1 serves as a homeostatic thresholding factor in IFN-λ expression. Pharmaceutical targeting of OGG1 activity may have clinical utility in modulating antiviral response.


Subject(s)
DNA Glycosylases , DNA , Epigenesis, Genetic , Interferon Lambda , Animals , Mice , DNA Glycosylases/genetics , Mice, Knockout
8.
Front Immunol ; 14: 1186369, 2023.
Article in English | MEDLINE | ID: mdl-37614238

ABSTRACT

Recent advances have uncovered the non-random distribution of 7, 8-dihydro-8-oxoguanine (8-oxoGua) induced by reactive oxygen species, which is believed to have epigenetic effects. Its cognate repair protein, 8-oxoguanine DNA glycosylase 1 (OGG1), reads oxidative substrates and participates in transcriptional initiation. When redox signaling is activated in small airway epithelial cells, the DNA repair function of OGG1 is repurposed to transmit acute inflammatory signals accompanied by cell state transitions and modification of the extracellular matrix. Epithelial-mesenchymal and epithelial-immune interactions act cooperatively to establish a local niche that instructs the mucosal immune landscape. If the transitional cell state governed by OGG1 remains responsive to inflammatory mediators instead of differentiation, the collateral damage provides positive feedback to inflammation, ascribing inflammatory remodeling to one of the drivers in chronic pathologies. In this review, we discuss the substrate-specific read through OGG1 has evolved in regulating the innate immune response, controlling adaptations of the airway to environmental and inflammatory injury, with a focus on the reader function of OGG1 in initiation and progression of epithelial to mesenchymal transitions in chronic pulmonary disease.


Subject(s)
DNA Glycosylases , Mucous Membrane , Guanine , Immunity, Innate
9.
J Biol Chem ; 299(8): 105028, 2023 08.
Article in English | MEDLINE | ID: mdl-37423306

ABSTRACT

As part of the antiviral response, cells activate the expressions of type I interferons (IFNs) and proinflammatory mediators to control viral spreading. Viral infections can impact DNA integrity; however, how DNA damage repair coordinates antiviral response remains elusive. Here we report Nei-like DNA glycosylase 2 (NEIL2), a transcription-coupled DNA repair protein, actively recognizes the oxidative DNA substrates induced by respiratory syncytial virus (RSV) infection to set the threshold of IFN-ß expression. Our results show that NEIL2 antagonizes nuclear factor κB (NF-κB) acting on the IFN-ß promoter early after infection, thus limiting gene expression amplified by type I IFNs. Mice lacking Neil2 are far more susceptible to RSV-induced illness with an exuberant expression of proinflammatory genes and tissue damage, and the administration of NEIL2 protein into the airway corrected these defects. These results suggest a safeguarding function of NEIL2 in controlling IFN-ß levels against RSV infection. Due to the short- and long-term side effects of type I IFNs applied in antiviral therapy, NEIL2 may provide an alternative not only for ensuring genome fidelity but also for controlling immune responses.


Subject(s)
DNA Glycosylases , Interferon-beta , Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , Animals , Mice , DNA , DNA Glycosylases/genetics , Interferon Type I/genetics , Interferon Type I/metabolism , Interferon-beta/genetics , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/immunology
10.
Geroscience ; 45(5): 2805-2817, 2023 10.
Article in English | MEDLINE | ID: mdl-37209203

ABSTRACT

DNAmPhenoAge, DNAmGrimAge, and the newly developed DNAmFitAge are DNA methylation (DNAm)-based biomarkers that reflect the individual aging process. Here, we examine the relationship between physical fitness and DNAm-based biomarkers in adults aged 33-88 with a wide range of physical fitness (including athletes with long-term training history). Higher levels of VO2max (ρ = 0.2, p = 6.4E - 4, r = 0.19, p = 1.2E - 3), Jumpmax (p = 0.11, p = 5.5E - 2, r = 0.13, p = 2.8E - 2), Gripmax (ρ = 0.17, p = 3.5E - 3, r = 0.16, p = 5.6E - 3), and HDL levels (ρ = 0.18, p = 1.95E - 3, r = 0.19, p = 1.1E - 3) are associated with better verbal short-term memory. In addition, verbal short-term memory is associated with decelerated aging assessed with the new DNAm biomarker FitAgeAcceleration (ρ: - 0.18, p = 0.0017). DNAmFitAge can distinguish high-fitness individuals from low/medium-fitness individuals better than existing DNAm biomarkers and estimates a younger biological age in the high-fit males and females (1.5 and 2.0 years younger, respectively). Our research shows that regular physical exercise contributes to observable physiological and methylation differences which are beneficial to the aging process. DNAmFitAge has now emerged as a new biological marker of quality of life.


Subject(s)
DNA Methylation , Quality of Life , Male , Female , Humans , Aging/genetics , Exercise , Biomarkers
11.
Redox Biol ; 61: 102634, 2023 05.
Article in English | MEDLINE | ID: mdl-36827746

ABSTRACT

Muscle contraction increases the level of reactive oxygen species (ROS), which has been acknowledged as key signaling entities in muscle remodeling and to underlie the healthy adaptation of skeletal muscle. ROS inevitably endows damage to various cellular molecules including DNA. DNA damage ought to be repaired to ensure genome integrity; yet, how DNA repair byproducts affect muscle adaptation remains elusive. Here, we showed that exercise elicited the generation of 8-oxo-7,8-dihydroguanine (8-oxoG), that was primarily found in mitochondrial genome of myofibers. Upon exercise, TA muscle's 8-oxoG excision capacity markedly enhanced, and in the interstitial fluid of TA muscle from the post-exercise mice, the level of free 8-oxoG base was significantly increased. Addition of 8-oxoG to myoblasts triggered myogenic differentiation via activating Ras-MEK-MyoD signal axis. 8-Oxoguanine DNA glycosylase1 (OGG1) silencing from cells or Ogg1 KO from mice decreased Ras activation, ERK phosphorylation, MyoD transcriptional activation, myogenic regulatory factors gene (MRFs) expression. In reconstruction experiments, exogenously added 8-oxoG base enhanced the expression of MRFs and accelerated the recovery of the injured skeletal muscle. Collectively, these data not only suggest that DNA repair metabolite 8-oxoG function as a signal entity for muscle remodeling and contribute to exercise-induced adaptation of skeletal muscle, but also raised the potential for utilizing 8-oxoG in clinical treatment to skeletal muscle damage-related disorders.


Subject(s)
DNA Damage , DNA Repair , Mice , Animals , Reactive Oxygen Species/metabolism , DNA , Cell Differentiation
12.
Nucleic Acids Res ; 51(3): 1087-1102, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36651270

ABSTRACT

Reactive oxygen species (ROS) are implicated in epithelial cell-state transition and deposition of extracellular matrix upon airway injury. Of the many cellular targets of ROS, oxidative DNA modification is a major driving signal. However, the role of oxidative DNA damage in modulation profibrotic processes has not been fully delineated. Herein, we report that oxidative DNA base lesions, 8-oxoG, complexed with 8-oxoguanine DNA glycosylase 1 (OGG1) functions as a pioneer factor, contributing to transcriptional reprogramming within airway epithelial cells. We show that TGFß1-induced ROS increased 8-oxoG levels in open chromatin, dynamically reconfigure the chromatin state. OGG1 complexed with 8-oxoG recruits transcription factors, including phosphorylated SMAD3, to pro-fibrotic gene promoters thereby facilitating gene activation. Moreover, 8-oxoG levels are elevated in lungs of mice subjected to TGFß1-induced injury. Pharmacologic targeting of OGG1 with the selective small molecule inhibitor of 8-oxoG binding, TH5487, abrogates fibrotic gene expression and remodeling in this model. Collectively, our study implicates that 8-oxoG substrate-specific binding by OGG1 is a central modulator of transcriptional regulation in response to tissue repair.


Subject(s)
DNA Glycosylases , Guanine , Lung Injury , Animals , Mice , Chromatin , DNA/metabolism , DNA Damage , DNA Glycosylases/metabolism , DNA Repair , Reactive Oxygen Species/metabolism , Transcriptional Activation , Guanine/analogs & derivatives
13.
Cells ; 11(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36497058

ABSTRACT

Tumorigenesis is highly correlated with the accumulation of mutations. The abundant and extensive DNA oxidation product, 8-Oxoguanine (8-oxoG), can cause mutations if it is not repaired by 8-oxoG repair systems. Therefore, the accumulation of 8-oxoG plays an essential role in tumorigenesis. To avoid the accumulation of 8-oxoG in the genome, base excision repair (BER), initiated by 8-oxoguanine DNA glycosylase1 (OGG1), is responsible for the removal of genomic 8-oxoG. It has been proven that 8-oxoG levels are significantly elevated in cancer cells compared with cells of normal tissues, and the induction of DNA damage by some antitumor drugs involves direct or indirect interference with BER, especially through inducing the production and accumulation of reactive oxygen species (ROS), which can lead to tumor cell death. In addition, the absence of the core components of BER can result in embryonic or early post-natal lethality in mice. Therefore, targeting 8-oxoG repair systems with inhibitors is a promising avenue for tumor therapy. In this study, we summarize the impact of 8-oxoG accumulation on tumorigenesis and the current status of cancer therapy approaches exploiting 8-oxoG repair enzyme targeting, as well as possible synergistic lethality strategies involving exogenous ROS-inducing agents.


Subject(s)
DNA Glycosylases , Animals , Mice , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , Oxidative Stress , DNA Repair , DNA Damage , Carcinogenesis/genetics , DNA/metabolism , Cell Transformation, Neoplastic
14.
Redox Biol ; 57: 102481, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36148770

ABSTRACT

Metformin is widely used to surmount insulin resistance (IR) and type 2 diabetes. Accumulating evidence suggests that metformin may improve IR through regulating gut microbiota and bile acids. However, the underlying mechanisms remain unclear. Our metabolomic analysis showed that metformin significantly increased the accumulation of tauroursodeoxycholic acid (TUDCA) in intestine and liver from high-fat diet (HFD)-induced IR mice. TUDCA also alleviated IR, and reduced oxidative stress and intestinal inflammation in ob/ob mice. TUDCA blocked KEAP1 to bind with Nrf2, resulting in Nrf2 translocation into nuclear and initiating the transcription of antioxidant genes, which eventually reduced intracellular ROS accumulation and improved insulin signaling. Analysis of gut microbiota further revealed that metformin reduced the relative abundance of Bifidobacterium, which produces bile salt hydrolase (BSH). The reduction in BSH was probably crucial for the accumulation of TUDCA. Metformin also increased the proportion of Akkermanisia muciniphlia in gut microbiota of ob/ob mice via TUDCA. These beneficial effects of metformin in remodeling gut microbiota, reducing oxidative stress and improving insulin sensitivity were partly due to the accumulation of TUDCA, suggesting that TUDCA may be a potential therapy for metabolic syndrome.

15.
Yi Chuan ; 44(6): 466-477, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35729095

ABSTRACT

Cells of the aerobic metabolic organism are inevitably subjected to the damage from reactive oxygen species (ROS). ROS cause multiple forms of DNA damage, among which the oxidation product of guanine G 8-hydroxyguanine (8-oxoG) is the most frequent DNA oxidative damage, recognized by the specific glycosidase OGG1 that initiates the base excision repair pathway. If left unrepaired, 8-oxoG may pair with A instead of C, leading to a mutation of G: C to T: A during replication. Thus, the accumulation of 8-oxoG or the abnormal OGG1 repair is thought to affect gene function, which in turn leads to the development of tumor or aging-related diseases. However, a series of recent studies have shown that 8-oxoG tends to be produced in regulatory regions of the genome. 8-oxoG can be regarded as an epigenetic modification, while OGG1 is a specific reader of this information. Substrate recognition, binding or resection by OGG1 can cause DNA conformation changes or affect histone modifications, causing up-regulation or down-regulation of genes with different properties. Thus, in addition to the potential genotoxicity, the association of guanine oxidative damage with development of tumors is closely related to its aberrant initiation of gene expression through epigenetic mechanisms. In this review, we summarize the underlying mechanism of 8-oxoG and repair enzyme OGG1 in tumor development and progression, with aims to interpret the relationship between DNA oxidative damage and tumor from a new perspective, and provide new ideas and targets for tumor treatment.


Subject(s)
DNA Glycosylases , Neoplasms , DNA , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Neoplasms/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism
16.
J Innate Immun ; 14(6): 593-614, 2022.
Article in English | MEDLINE | ID: mdl-35512649

ABSTRACT

The primary cause of morbidity and mortality from infection with respiratory syncytial virus (RSV) is the excessive innate immune response(s) (IIR) in which reactive oxygen species (ROS) play key role(s). However, the mechanisms for these processes are not fully understood. We hypothesized that expressions of IIR genes are controlled by the ROS-generated epigenetic-like mark 7,8-dihydro-8-oxo(d)guanine (8-oxo(d)Gua) and 8-oxoguanine DNA glycosylase1 (OGG1). Here, we report that ROS not only generates intrahelical 8-oxo(d)Gua, but also enzymatically disables OGG1 in RSV-infected human airway epithelial cells and mouse lungs. OGG1 bound to 8-oxo(d)Gua in gene regulatory sequences promotes expression of IIR genes, and consequently exacerbates lung inflammation, histological changes, and body weight loss of experimental animals. Pharmacological inhibition of OGG1 substrate binding decreased expression of RSV-induced chemokine and cytokines and significantly lessened clinical symptoms. Results of mechanistic studies show that OGG1 binding at 8-oxo(d)Gua promoter regions modulated loading of transcription factors via transient cooperative interactions in RSV-infected lungs and airway epithelial cells. Other base specific DNA repair proteins had no effects. Collectively, this study identifies unprecedented roles of ROS-generated DNA base lesion(s) and cognate repair protein as a determinant of RSV-induced exuberant inflammation. Pharmaceutical inhibition of OGG1 interaction with its DNA substrate may represent a novel strategy in prevention/intervention of respiratory viral infections.


Subject(s)
DNA Glycosylases , Immunity, Innate , Humans , Animals , Mice , DNA , DNA Glycosylases/genetics
17.
J Immunol ; 208(10): 2376-2389, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35444028

ABSTRACT

Proinflammatory cytokines/chemokines are commonly regulated by RNA-binding proteins at posttranscriptional levels. Human Ag R (HuR)/embryonic lethal abnormal vision-like 1 (ELAVL1) is one of the well-characterized RNA-binding proteins that increases the stability of short-lived mRNAs, which encode proinflammatory mediators. HuR employs its nucleocytoplasmic shuttling sequence (HNS) domain, interacting with poly(ADP-ribose) polymerase 1 (PARP1), which accounts for the enhanced poly-ADP-ribosylation and cytoplasmic shuttling of HuR. Also by using its HNS domain, HuR undergoes dimerization/oligomerization, underlying the increased binding of HuR with proinflammatory cytokine/chemokine mRNAs and the disassociation of the miRNA-induced silencing complex from the targets. Therefore, competitively blocking the interactions of HuR with its partners may suppress proinflammatory mediator production. In this study, peptides derived from the sequence of the HuR-HNS domain were synthesized, and their effects on interfering HuR interacting with PARP1 and HuR itself were analyzed. Moreover, cell-penetrating TAT-HuR-HNS3 was delivered into human and mouse cells or administered into mouse lungs with or without exposure of TNF-α or LPS. mRNA levels of proinflammatory mediators as well as neutrophil infiltration were evaluated. We showed that TAT-HuR-HNS3 interrupts HuR-PARP1 interaction and therefore results in a lowered poly-ADP-ribosylation level and decreased cytoplasmic distribution of HuR. TAT-HuR-HNS3 also blocks HuR dimerization and promotes Argonaute 2-based miRNA-induced silencing complex binding to the targets. Moreover, TAT-HuR-HNS3 lowers mRNA stability of proinflammatory mediators in TNF-α-treated epithelial cells and macrophages, and it decreases TNF-α-induced inflammatory responses in lungs of experimental animals. Thus, TAT-HuR-HNS3 is a promising lead peptide for the development of inhibitors to treat inflammation-related diseases.


Subject(s)
Cell-Penetrating Peptides , ELAV-Like Protein 1/immunology , MicroRNAs , Animals , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Chemokines/genetics , Cytokines/metabolism , ELAV Proteins/genetics , ELAV Proteins/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/metabolism , Gene Expression , Mice , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Cell Mol Life Sci ; 79(1): 60, 2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35000037

ABSTRACT

Parthanatos is a form of regulated cell death involved in the pathogenesis of many diseases, particularly neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Parthanatos is a multistep cell death pathway cascade that involves poly (ADP-ribose) polymerase 1 (PARP-1) overactivation, PAR accumulation, PAR binding to apoptosis-inducing factor (AIF), AIF release from the mitochondria, nuclear translocation of the AIF/macrophage migration inhibitory factor (MIF) complex, and MIF-mediated large-scale DNA fragmentation. All the key players in the parthanatos pathway are pleiotropic proteins with diverse functions. An in-depth understanding of the structure-based activity of the key factors, and the biochemical mechanisms of parthanatos, is crucial for the development of drugs and therapeutic strategies. In this review, we delve into the key players of the parthanatos pathway and reveal the multiple levels of therapeutic opportunities for treating parthanatos-based pathogenesis.


Subject(s)
DNA Fragmentation , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Neurodegenerative Diseases/pathology , Parthanatos/physiology , Poly (ADP-Ribose) Polymerase-1/metabolism , Active Transport, Cell Nucleus/physiology , Apoptosis Inducing Factor/metabolism , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/drug therapy , Poly Adenosine Diphosphate Ribose/metabolism
19.
Cell Mol Life Sci ; 78(4): 1817-1835, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32789690

ABSTRACT

Poly(ADP-ribosyl)ation (PARylation) is an important post-translational modification mainly catalyzed by poly-ADP-ribose polymerase 1 (PARP1). In addition to having important roles in DNA damage detection and repair, it functions in gene expression regulation, especially at the posttranscriptional level. Embryonic lethal abnormal vision-like 1/human antigen R (ELAVL/HuR), a canonical 3' untranslated region AU-rich element-binding protein, is a crucial mRNA-stabilizing protein that protects target mRNAs from RNA-destabilizing protein- or microRNA-induced silencing complex (miRISC)-mediated degradation. Additionally, in some cases, HuR itself either promotes or suppresses translation. Here, we demonstrated that in response to inflammatory stimuli, the PARylation of HuR, mostly at the conserved D226 site, by PARP1 increased the formation of the HuR oligomer/multimer, and HuR oligomerization promoted the disassociation of miRISC and stabilized the pro-inflammatory gene mRNAs. The prevention of PARP1 activation or HuR oligomerization attenuated lipopolysaccharide-induced inflammatory gene expression and the airway recruitment of neutrophils in mouse lungs. The present study verified a novel mechanism of PARP1 and HuR PARylation in the RNA stability regulation, increasing our understanding of how PARP1 regulates gene expression.


Subject(s)
ELAV-Like Protein 1/genetics , Inflammation/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Poly ADP Ribosylation/genetics , Animals , DNA Damage/genetics , DNA Repair/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Inflammation/chemically induced , Inflammation/pathology , Lipopolysaccharides/toxicity , Neutrophils/drug effects , Protein Processing, Post-Translational/genetics , RNA Stability/genetics , RNA, Messenger/genetics
20.
J Cell Biochem ; 121(12): 4898-4907, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32628333

ABSTRACT

O-GlcNAc transferase (OGT) is the enzyme catalyzing protein O-GlcNAcylation by addition of a single O-linked-ß-N-acetylglucosamine molecule (O-GlcNAc) to nuclear and cytoplasmic targets, and it uses uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a donor. As UDP-GlcNAc is the final product of the nutrient-sensing hexosamine signaling pathway, overexpression or knockout of ogt in mammals or invertebrate models influences cellular nutrient-response signals and increases susceptibility to chronic diseases of aging. Evidence shows that OGT expression levels decrease in tissues of older mice and rats. However, how OGT expression is modulated in the aging process remains poorly understood. In Caenorhabditis elegans, the exclusive mammalian OGT ortholog OGT-1 is crucial for lifespan control. Here, we observe that worm OGT-1 expression gradually reduces during aging. By combining prediction via the "MATCH" algorithm and luciferase reporter assays, GATA factor ELT-2, the homolog of human GATA4, is identified as a transcriptional factor driving OGT-1 expression. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assays show ELT-2 directly binds to and activates the ogt-1 promoter. Knockdown of elt-2 decreases the global O-GlcNAc modification level and reduces the lifespan of wild-type worms. The reduction in lifespan caused by elt-2 RNA interference is abrogated by the loss of ogt-1. These results imply that GATA factors are able to activate OGT expression, which could be beneficial for longevity and the development of therapeutic treatment for aging-related diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...