Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 41(13): 6761-73, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23671337

ABSTRACT

Uracil-DNA glycosylase (UDG) is a key repair enzyme responsible for removing uracil residues from DNA. Interestingly, UDG is the only enzyme known to be inhibited by two different DNA mimic proteins: p56 encoded by the Bacillus subtilis phage 29 and the well-characterized protein Ugi encoded by the B. subtilis phage PBS1/PBS2. Atomic-resolution crystal structures of the B. subtilis UDG both free and in complex with p56, combined with site-directed mutagenesis analysis, allowed us to identify the key amino acid residues required for enzyme activity, DNA binding and complex formation. An important requirement for complex formation is the recognition carried out by p56 of the protruding Phe191 residue from B. subtilis UDG, whose side-chain is inserted into the DNA minor groove to replace the flipped-out uracil. A comparative analysis of both p56 and Ugi inhibitors enabled us to identify their common and distinctive features. Thereby, our results provide an insight into how two DNA mimic proteins with different structural and biochemical properties are able to specifically block the DNA-binding domain of the same enzyme.


Subject(s)
Uracil-DNA Glycosidase/chemistry , Viral Proteins/chemistry , Amino Acids/chemistry , Bacillus Phages , Bacillus subtilis/enzymology , Crystallography, X-Ray , DNA/metabolism , Models, Molecular , Mutation , Protein Binding , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
2.
J Biol Chem ; 287(35): 29237-49, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22745128

ABSTRACT

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP(5). Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP(5) 2-K, which shed light on aspects of substrate recognition. However, failure of IP(5) 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP(5) 2-K in its different conformations by crystallography. Thus, the IP(5) 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP(5) 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg(130) mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP(5) 2-K in mammals.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phytic Acid/chemistry , Amino Acid Substitution , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Crystallography, X-Ray , Kinetics , Mutation, Missense , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phytic Acid/metabolism , Protein Structure, Tertiary , Substrate Specificity/physiology
3.
Article in English | MEDLINE | ID: mdl-22684075

ABSTRACT

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP(5) 2-K) is a key enzyme that catalyzes the synthesis of phytic acid (IP(6)) from inositol 1,3,4,5,6-pentakisphosphate (IP(5)) and ATP. The first structure of IP(5) 2-K, that from Arabidopsis thaliana, has been solved previously; it only crystallized in the presence of inositol, either the substrate IP(5) or the product IP(6), and failed to crystallize in its free state (without inositol). Based on structural analysis, a point mutation of IP(5) 2-K (W129A) has been produced in order to overcome this limitation and obtain information about protein conformational changes upon substrate binding. Here, the production and crystallization of W129A IP(5) 2-K in its free state and with bound nucleotide is described. These crystals differed from the native crystals and belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 66.00, b = 68.23, c = 105.80 Å and a = 63.06, b = 71.80, c = 100.23 Å, respectively. The crystals diffracted to resolutions of 2.22 Å (apo) and 2.05 Å (nucleotide bound) using synchrotron radiation and contained one molecule per asymmetric unit. The structures have been determined using the molecular-replacement method and refinement is being undertaken.


Subject(s)
Arabidopsis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/isolation & purification , Crystallization , Crystallography, X-Ray , Gene Expression , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/isolation & purification
4.
Proc Natl Acad Sci U S A ; 107(21): 9608-13, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20453199

ABSTRACT

Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular (InsP(6)) is involved in mRNA export and editing or chromatin remodeling among other events. InsP(6) accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP(6) that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P(5) 2-kinase (InsP(5) 2-kinase or Ipk1) catalyses the synthesis of InsP(6) from InsP(5) and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP(5) 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates.


Subject(s)
Arabidopsis/enzymology , Inositol Phosphates/chemistry , Inositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Water/chemistry , Amino Acid Sequence , Animals , Binding Sites , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Mutation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity
5.
Article in English | MEDLINE | ID: mdl-20057083

ABSTRACT

Inositol 1,3,4,5,6-pentakisphosphate kinase (IP(5) 2-K) is an enzyme involved in inositol metabolism that synthesizes IP(6) (inositol 1,2,3,4,5,6-hexakisphosphate) from inositol 1,3,4,5,6-pentakisphosphate (IP(5)) and ATP. IP(6) is the major phosphorus reserve in plants, while in mammals it is involved in multiple cellular events such as DNA editing and chromatin remodelling. In addition, IP(6) is the precursor of other highly phosphorylated inositols which also play highly relevant roles. IP(5) 2-K is the only enzyme that phosphorylates the 2-OH axial position of the inositide and understanding its molecular mechanism of substrate specificity is of great interest in cell biology. IP(5) 2-K from Arabidopsis thaliana has been expressed in Escherichia coli as two different fusion proteins and purified. Both protein preparations yielded crystals of different quality, always in the presence of IP(6). The best crystals obtained for X-ray crystallographic analysis belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 58.124, b = 113.591, c = 142.478 A. Several diffraction data sets were collected for the native enzyme and two heavy-atom derivatives using a synchrotron source.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/chemistry , Arabidopsis/enzymology , Arabidopsis Proteins/chemistry , Crystallization , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...