Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(10): 6137-6151, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34431520

ABSTRACT

PURPOSE: Electron-based ultra-high dose rate radiation therapy (UHDR-RT), also known as Flash-RT, has shown the ability to improve the therapeutic index in comparison to conventional radiotherapy (CONV-RT) through increased sparing of normal tissue. However, the extremely high dose rates in UHDR-RT have raised the need for accurate real-time dosimetry tools. This work aims to demonstrate the potential of the emerging technology of Ionized Radiation Acoustic Imaging (iRAI) through simulation studies and investigate its characteristics as a promising relative in vivo dosimetric tool for UHDR-RT. METHODS: The detection of induced acoustic waves following a single UHDR pulse of a modified 6 MeV 21EX Varian Clinac in a uniform porcine gelatin phantom that is brain-tissue equivalent was simulated for an ideal ultrasound transducer. The full 3D dose distributions in the phantom for a 1 × 1 cm2 field were simulated using EGSnrc (BEAMnrc∖DOSXYZnrc) Monte Carlo (MC) codes. The relative dosimetry simulations were verified with dose experimental measurements using Gafchromic films. The spatial dose distribution was converted into an initial pressure source spatial distribution using the medium-dependent dose-pressure relation. The MATLAB-based toolbox k-Wave was then used to model the propagation of acoustic waves through the phantom and perform time-reversal (TR)-based imaging reconstruction. The effect of the various linear accelerator (linac) operating parameters, including linac pulse duration and pulse repetition rate (frequency), were investigated as well. RESULTS: The MC dose simulation results agreed with the film measurement results, specifically at the central beam region up to 80% dose within approximately 5% relative error for the central profile region and a local relative error of <6% for percentage dose depth. IRAI-based FWHM of the radiation beam was within approximately 3 mm relative to the MC-simulated beam FWHM at the beam entrance. The real-time pressure signal change agreed with the dose changes proving the capability of the iRAI for predicting the beam position. IRAI was tested through 3D simulations of its response to be based on the temporal changes in the linac operating parameters on a dose per pulse basis as expected theoretically from the pressure-dose proportionality. The pressure signal amplitude obtained through 2D simulations was proportional to the dose per pulse. The instantaneous pressure signal amplitude decreases as the linac pulse duration increases, as predicted from the pressure wave generation equations, such that the shorter the linac pulse the higher the signal and the better the temporal (spatial) resolutions of iRAI. The effect of the longer linac pulse duration on the spatial resolution of the 3D constructed iRAI images was corrected for linac pulse deconvolution. This correction has improved the passing rate of the 1%/1 mm gamma test criteria, between the pressure-constructed and dosimetric beam characteristics, to as high as 98%. CONCLUSIONS: A full simulation workflow was developed for testing the effectiveness of iRAI as a promising relative dosimetry tool for UHDR-RT radiation therapy. IRAI has shown the advantage of 3D dose mapping through the dose signal linearity and, hence, has the potential to be a useful dosimeter at depth dose measurement and beam localization and, hence, potentially for in vivo dosimetry in UHDR-RT.


Subject(s)
Particle Accelerators , Radiometry , Acoustics , Animals , Monte Carlo Method , Phantoms, Imaging , Radiation, Ionizing , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Swine
2.
Med Phys ; 48(3): 1404-1416, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33378092

ABSTRACT

PURPOSE: To develop and implement an efficient and accurate commissioning procedure for small-field static beam animal irradiation studies on an MV research linear accelerator (Linatron-M9) using radiochromic gel dosimetry. MATERIALS: The research linear accelerator (Linatron-M9) is a 9 MV linac with a static fixed collimator opening of 5.08 cm diameter. Lead collimators were manually placed to create smaller fields of 2 × 2 cm2 , 1 × 1 cm2 , and 0.5 × 0.5 cm2 . Relative dosimetry measurements were performed, including profiles, percent depth dose (PDD) curves, beam divergence, and relative output factors using various dosimetry tools, including a small volume ionization chamber (A14), GAFCHROMIC™ EBT3 film, and Clearview gel dosimeters. The gel dosimeter was used to provide a 3D volumetric reference of the irradiated fields. The Linatron profiles and relative output factors were extracted at a reference depth of 2 cm with the output factor measured relative to the 2 × 2 cm2 reference field. Absolute dosimetry was performed using A14 ionization chamber measurements, which were verified using a national standards laboratory remote dosimetry service. RESULTS: Absolute dosimetry measurements were confirmed within 1.4% (k = 2, 95% confidence = 5%). The relative output factor of the small fields measured with films and gels agreed with a maximum relative percent error difference between the two methods of 1.1 % for the 1 × 1 cm2 field and 4.3 % for the 0.5 × 0.5 cm2 field. These relative errors were primarily due to the variability in the collimator positioning. The measured beam profiles demonstrated excellent agreement for beam size (measured as FWHM), within approximately 0.8 mm (or less). Film measurements were more accurate in the penumbra region due to the film's finer resolution compared with the gel dosimeter. Following the van Dyk criteria, the PDD values of the film and gel measurements agree within 11% in the buildup region starting from 0.5 cm depth and within 2.6 % beyond maximum dose and into the fall-off region for depths up to 5 cm. The 2D beam profile isodose lines agree within 0.5 mm in all regions for the 0.5 × 0.5 cm2 and the 1 × 1 cm2 fields and within 1 mm for the larger field of 2 × 2 cm2 . The 2D PDD curves agree within approximately 2% of the maximum in the typical therapy region (1-4 cm) for the 1 × 1 cm2 and 2 × 2 cm2 and within 5% for the 0.5 × 0.5 cm2 field. CONCLUSION: This work provides a commissioning process to measure the beam characteristics of a fixed beam MV accelerator with detailed dosimetric evaluation for its implementation in megavoltage small animal irradiation studies. Radiochromic gel dosimeters are efficient small-field relative dosimetry tools providing 3D dose measurements allowing for full representation of dose, dosimeter misalignment corrections and high reproducibility with low inter-dosimeter variability. Overall, radiochromic gels are valuable for fast, full relative dosimetry commissioning in comparison to films for application in high-energy small-field animal irradiation studies.


Subject(s)
Particle Accelerators , Radiometry , Animals , Film Dosimetry , Radiation Dosimeters , Radiotherapy, High-Energy , Reproducibility of Results
3.
Med Phys ; 47(10): 5090-5101, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32592212

ABSTRACT

PURPOSE: FLASH radiotherapy (FLASH-RT) is a novel irradiation modality with ultra-high dose rates (>40 Gy/s) that have shown tremendous promise for its ability to enhance normal tissue sparing while maintaining comparable tumor cell eradication toconventional radiotherapy (CONV-RT). Due to its extremely high dose rates, clinical translation of FLASH-RT is hampered by risky delivery and current limitations in dosimetric devices, which cannot accurately measure, in real time, dose at deeper tissue. This work aims to investigate ionizing radiation acoustic imaging (iRAI) as a promising image-guidance modality for real-time deep tissue dose measurements during FLASH-RT. The underlying hypothesis is that iRAI can enable mapping of dose deposition with respect to surrounding tissue with a single linear accelerator (linac) pulse precision in real time. In this work, the relationship between iRAI signal response and deposited dose was investigated as well as the feasibility of using a proof-of-concept dual-modality imaging system of ultrasound and iRAI for treatment beam co-localization with respect to underlying anatomy. METHODS: Two experimental setups were used to study the feasibility of iRAI for FLASH-RT using 6 MeV electrons from a modified Varian Clinac. First, experiments were conducted using a single element focused transducer to take a series of point measurements in a gelatin phantom, which was compared with independent dose measurements using GAFchromic film. Secondly, an ultrasound and iRAI dual-modality imaging system utilizing a phased array transducer was used to take coregistered two-dimensional (2D) iRAI signal amplitude images as well as ultrasound B-mode images, to map the dose deposition with respect to surrounding anatomy in an ex vivo rabbit liver model with a single linac pulse precision. RESULTS: Using a single element transducer, iRAI measurements showed a highly linear relationship between the iRAI signal amplitude and the linac dose per pulse (r2  = 0.9998) with a repeatability precision of 1% and a dose resolution error <2.5% in a homogenous phantom when compared to GAFchromic film dose measurements. These phantom results were used to develop a calibration curve between the iRAI signal response and the delivered dose per pulse. Subsequently, a normalized depth dose curve was generated that agreed with film measurements with an RMSE of 0.0243, using correction factors to account for deviations in measurement conditions with respect to calibration. Experiments on the ex-vivo rabbit liver model demonstrated that a 2D iRAI image could be generated successfully from a single linac pulse, which was fused with the B-mode ultrasound image to provide information about the beam position with respect to surrounding anatomy in real time. CONCLUSION: This work demonstrates the potential of using iRAI for real-time deep tissue dosimetry in FLASH-RT. Our results show that iRAI signals are linear with dose and can accurately map the delivered radiation dose with respect to soft tissue anatomy. With its ability to measure dose for individual linac pulses at any location within surrounding soft tissue while identifying where that dose is being delivered anatomically in real time, iRAI can be an indispensable tool to enable safe and efficient clinical translation of FLASH-RT.


Subject(s)
Particle Accelerators , Radiometry , Acoustics , Animals , Phantoms, Imaging , Rabbits , Radiation, Ionizing , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...