Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 19: 495-500, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29900347

ABSTRACT

Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31+/41-, CD62e+, and CD144+ surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.

2.
Atherosclerosis ; 273: 67-74, 2018 06.
Article in English | MEDLINE | ID: mdl-29684662

ABSTRACT

BACKGROUND AND AIMS: Circulating endothelial microparticles (EMPs) are increased in arterial hypertension. The role of physicomechanical factors that may induce EMP release in vivo is still unknown. We studied the relationship of EMPs and physicomechanical factors in stable arterial hypertension and hypertensive emergencies, and investigated the pattern of EMP release after mechanical endothelial injury. METHODS: In a pilot study, 41 subjects (50% hypertensives) were recruited. EMPs were discriminated by flow-cytometry (CD31+/41-, CD62e+, CD144+). Besides blood pressure measurements, pulse-wave-analysis was performed. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), and wall-shear-stress (WSS) were measured ultrasonographically in the brachial artery; microvascular perfusion by laser-Doppler (Clinicaltrials.gov: NCT02795377). We studied patients with hypertensive emergencies before and 4 h after BP lowering by urapidil (n = 12) and studied the release of EMPs due to mechanical endothelial injury after coronary angiography (n = 10). RESULTS: Hypertensives exhibited increased EMPs (CD31+/41-, CD144+, CD62e+) as compared to normotensives and EMPs univariately correlated with systolic BP (SBP), augmentation index, and pulse wave velocity and inversely with FMD. CD31+/41--EMPs correlated with diameter and inversely with WSS and NMD. CD62e+ and CD144+-EMPs inversely correlated with microvascular function. During hypertensive emergency, only CD62e+ and CD144+-EMPs were further elevated and FMD was decreased compared to stable hypertensives. Blood pressure lowering decreased CD62e+ and CD144+-EMPs and increased FMD. CD31+/41-EMPs, diameter, and WSS remained unaffected. Similar to hypertensive emergency, catheter-related endothelial injury increased only CD144+ and CD62e+-EMPs. CONCLUSIONS: EMP release in hypertension is complex and may involve both physicomechanical endothelial injury and activation (CD144+, CD62e+) and decreased wall shear stress (CD31+/41-).


Subject(s)
Cell-Derived Microparticles , Endothelial Cells , Hypertension/blood , Catheters/adverse effects , Emergencies , Endothelium, Vascular/cytology , Endothelium, Vascular/injuries , Humans , Male , Middle Aged , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...