Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4661, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949158

ABSTRACT

Diabetic kidney disease (DKD), also known as diabetic nephropathy, is the leading cause of renal impairment and end-stage renal disease. Patients with diabetes are at risk for DKD because of poor control of their blood glucose, as well as nonmodifiable risk factors including age, ethnicity, and genetics. This genome-wide association study (GWAS) was conducted for the first time in the Emirati population to investigate possible genetic factors associated with the development and progression of DKD. We included data on 7,921,925 single nucleotide polymorphism (SNPs) in 258 cases of type 2 diabetes mellitus (T2DM) who developed DKD and 938 control subjects with T2DM who did not develop DKD. GWAS suggestive results (P < 1 × 10-5) were further replicated using summary statistics from three cohorts with T2DM-induced DKD (Bio Bank Japan data, UK Biobank, and FinnGen Project data) and T1DM-induced DKD (UK-ROI cohort data from Belfast, UK). When conducting a multiple linear regression model for gene-set analyses, the CNR2 gene demonstrated genome-wide significance at 1.46 × 10-6. SNPs in CNR2 gene, encodes cannabinoid receptor 2 or CB2, were replicated in Japanese samples with the leading SNP rs2501391 showing a Pcombined = 9.3 × 10-7, and odds ratio = 0.67 in association with DKD associated with T2DM, but not with T1DM, without any significant association with T2DM itself. The allele frequencies of our cohort and those of the replication cohorts were in most cases markedly different. In addition, we replicated the association between rs1564939 in the GLRA3 gene and DKD in T2DM (P = 0.016, odds ratio = 0.54 per allele C). Our findings suggest evidence that cannabinoid signalling may be involved in the development of DKD through CB2, which is expressed in different kidney regions and known to be involved in insulin resistance, inflammation, and the development of kidney fibrosis.


Subject(s)
Cannabinoids , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetic Nephropathies/genetics , Diabetic Nephropathies/complications , Genome-Wide Association Study , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 1/complications
2.
Front Genet ; 12: 670844, 2021.
Article in English | MEDLINE | ID: mdl-34276777

ABSTRACT

The classical Human Leucocyte Antigen (HLA) class II haplotypes of the Major Histocompatibility Complex (MHC) that are associated with type 1 diabetes (T1D) were identified in five families from the United Arab Emirates (UAE). Segregation analyses were performed on these 5 families with the disease, 3 with one child and 2 with 2 children diagnosed with T1D. Three HLA-DR4 haplotypes were identified: HLA- DRB1∗04:01:01-DQB1∗03:02:01:01; HLA- DRB1∗04:02:01- DQB1∗03:02:01; and HLA -DRB1∗04:05:01-DQB1∗02:02:01:02. All have previously been identified to be associated with T1D in studies of the Arabian population. In the 10 parents from the 5 families, 9 had at least one HLA-DR4 and HLA-DR3 haplotype which potentially increases the risk of T1D. Of these 9 parents, 3 were heterozygous for HLA-DR4/HLA-DR3 and one was homozygous for HLA-DR3. Two haplotypes that were identified here extend to the HLA class I region were previously designated AH8.2 (HLA -A∗26-B∗08-DRB1∗03) and AH50.2 (HLA -C∗06-B∗50-DRB1∗03:01-DQ∗02) and associated with diabetes in neighboring North Indian populations. This study provides examples of MHC haplotype analysis in pedigrees to improve our understanding of the genetics of T1D in the understudied population of the UAE.

SELECTION OF CITATIONS
SEARCH DETAIL
...