Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
ALTEX ; 39(4): 667-693, 2022.
Article in English | MEDLINE | ID: mdl-36098377

ABSTRACT

Assessment of potential human health risks associated with environmental and other agents requires careful evaluation of all available and relevant evidence for the agent of interest, including both data-rich and data-poor agents. With the advent of new approach methodologies in toxicological risk assessment, guidance on integrating evidence from mul-tiple evidence streams is needed to ensure that all available data is given due consideration in both qualitative and quantitative risk assessment. The present report summarizes the discussions among academic, government, and private sector participants from North America and Europe in an international workshop convened to explore the development of an evidence-based risk assessment framework, taking into account all available evidence in an appropriate manner in order to arrive at the best possible characterization of potential human health risks and associated uncertainty. Although consensus among workshop participants was not a specific goal, there was general agreement on the key consider-ations involved in evidence-based risk assessment incorporating 21st century science into human health risk assessment. These considerations have been embodied into an overarching prototype framework for evidence integration that will be explored in more depth in a follow-up meeting.


Subject(s)
Risk Assessment , Humans , Europe
2.
ALTEX ; 39(3): 443­450, 2022.
Article in English | MEDLINE | ID: mdl-34164695

ABSTRACT

Since the early 1970s, the Monographs published by the International Agency for Research on Cancer (IARC) apply rigorous procedures for the scientific review and evaluation of carcinogenic hazards. The Preamble to the IARC Monographs describes the objective and scope of the Monographs Programme, the scientific principles and procedures used in developing a Monograph, the types of evidence considered, and the scientific criteria that guide the evaluations. This article presents an overview of the historical development of the Preamble from the time it began to take shape in the late 1970s up to and including the most recent update in 2019. Over the years, the IARC Monographs Programme has taken account of scientific and procedural advances in identifying, reviewing, evaluating, and integrating evidence to define causes of human cancer. Since the previous edition of the Preamble in 2006, the new developments include a stronger emphasis on mechanistic evidence based on key characteristics of carcinogens; greater consideration of exposure assessment methods in epidemiological studies; and integration of the streams of evidence on cancer in humans, cancer in experimental animals, and mechanisms in reaching the overall evaluations. Thus, the Preamble now allows an evaluation process in the absence of data from animal studies, and the evidence on key characteristics of cancer may be contributed by new approach methodologies, thus potentially reducing or avoiding the use of experimental animals.


Subject(s)
Carcinogens , Neoplasms , Animals , Animals, Laboratory , Carcinogens/toxicity , Humans , International Agencies , Neoplasms/chemically induced , Publications
3.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 203-236, 2019.
Article in English | MEDLINE | ID: mdl-31795923

ABSTRACT

Since the inception of the IARC Monographs Programme in the early 1970s, this Programme has developed 119 Monograph Volumes on more than 1000 agents for which there exists some evidence of cancer risk to humans. Of these, 120 agents were found to meet the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs, compiled in 2008-2009 and published in 2012, provided a review and update of the 107 Group 1 agents identified as of 2009. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. The Group I agents reviewed in Volume 100, as well as five additional Group 1 agents defined in subsequent Volumes of the Monographs, were used to assess the degree of concordance between sites where tumors originate in humans and experimental animals including mice, rats, hamsters, dogs, and non-human primates using an anatomically based tumor nomenclature system, representing 39 tumor sites and 14 organ and tissue systems. This evaluation identified 91 Group 1 agents with sufficient evidence (82 agents) or limited evidence (9 agents) of carcinogenicity in animals. The most common tumors observed in both humans and animals were those of the respiratory system including larynx, lung, and lower respiratory tract. In humans, respiratory system tumors were noted for 31 of the 111 distinct Group 1 carcinogens identified up to and including Volume 109 of the IARC Monographs, comprising predominantly 14 chemical agents and related occupations in category VI; seven arsenic, metals, fibers, and dusts in category III, and five personal habits and indoor combustions in category V. Subsequent to respiratory system tumors, those in lymphoid and hematopoietic tissues (26 agents), the urothelium (18 agents), and the upper aerodigestive tract (16 agents) were most often seen in humans, while tumors in digestive organs (19 agents), skin (18 agents), and connective tissues (17 agents) were frequently seen in animals. Exposures to radiation, particularly X- and γ-radiation, and tobacco smoke were associated with tumors at multiple sites in humans. Although the IARC Monographs did not emphasize tumor site concordance between animals and humans, substantial concordance was detected for several organ and tissue systems, even under the stringent criteria for sufficient evidence of carcinogenicity used by IARC. Of the 60 agents for which at least one tumor site was identified in both humans and animals, 52 (87%) exhibited tumors in at least one of the same organ and tissue systems in humans and animals. It should be noted that some caution is needed in interpreting concordance at sites where sample size is particularly small. Although perfect (100%) concordance was noted for agents that induce tumors of the mesothelium, only two Group 1 agents that met the criteria for inclusion in the concordance analysis caused tumors at this site. Although the present analysis demonstrates good concordance between animals and humans for many, but not all, tumor sites, limitations of available data may result in underestimation of concordance.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens/toxicity , Neoplasms/chemically induced , Animals , Animals, Laboratory , Humans , Neoplasms/pathology , Species Specificity
4.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 237-243, 2019.
Article in English | MEDLINE | ID: mdl-31612803

ABSTRACT

Volume 100 in the series of IARC Monographs on the Evaluation of Carcinogenic Risks to Humans comprises an update and review of relevant information on all agents determined to induce cancer in humans. These Group 1 agents are categorized in 6 Monographs (Volumes 100A-F) published in 2012. This paper describes the methodology and stringent criteria used in the creation of a comprehensive database on tumors noted in animals and humans for the carcinogens reviewed in Volume 100, and for additional Group 1 agents that were identified in subsequent Monographs through Volume 109. The development of this database involved the systematic collection of relevant data on tumors detected in humans and experimental animals identified by the Working Groups that conducted evaluations reported in the IARC Monographs. The database includes all human tumor sites identified by the Working Groups, along with all tumor sites for which there was sufficient evidence in experimental animals. This database provides a basis for assessing the degree of concordance between tumor sites observed in humans and experimental animals for Group 1 agents identified through Volume 109.


Subject(s)
Carcinogens/toxicity , Databases, Factual , Neoplasms/chemically induced , Animals , Animals, Laboratory , Humans , Neoplasms/pathology
5.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 244-263, 2019.
Article in English | MEDLINE | ID: mdl-31637961

ABSTRACT

Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.


Subject(s)
Carcinogens/toxicity , Mutagens/toxicity , Neoplasms/chemically induced , Animals , Carcinogenesis/chemically induced , Carcinogenicity Tests , Humans , International Agencies , Mutagenesis , Neoplasms/pathology
6.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 288-359, 2019.
Article in English | MEDLINE | ID: mdl-31631808

ABSTRACT

This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens/toxicity , Neoplasms/chemically induced , Animals , Humans , Mutagens/toxicity , Neoplasms/pathology
7.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 264-287, 2019.
Article in English | MEDLINE | ID: mdl-31379270

ABSTRACT

A database on mechanistic characteristics of human carcinogenic agents was developed by collecting mechanistic information on agents identified as human carcinogens (Group 1) by the International Agency for Research on Cancer (IARC) in the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. A two-phase process is described for the construction of the database according to 24 toxicological endpoints, derived from appropriate test systems that were acquired from data obtained from the mechanisms sections of the IARC Monographs (Section 4) and a supplementary PubMed search. These endpoints were then aligned with 10 key characteristics of human carcinogens that reflect the broader attributes of these agents relating to the development of cancer in humans. The considerations involved in linking of toxicological endpoints to key characteristics are described and specific examples of the determination of key characteristics for six specific agents (tamoxifen, hepatitis B virus, arsenic, ultraviolet and solar radiation, tobacco smoking, and dioxin) are provided. Data for humans and animals were tabulated separately, as were results for in-vivo and for in-vitro sources of information. The database was constructed to support a separate analysis of the expression of these endpoints by 86 Group 1 carcinogens, in-vivo and in-vitro along with an analysis of the key characteristics of these agents.


Subject(s)
Carcinogens/toxicity , Databases, Factual , Neoplasms/chemically induced , Animals , Carcinogenesis/chemically induced , Carcinogenicity Tests , Humans
8.
Environ Health Perspect ; 124(6): 713-21, 2016 06.
Article in English | MEDLINE | ID: mdl-26600562

ABSTRACT

BACKGROUND: A recent review by the International Agency for Research on Cancer (IARC) updated the assessments of the > 100 agents classified as Group 1, carcinogenic to humans (IARC Monographs Volume 100, parts A-F). This exercise was complicated by the absence of a broadly accepted, systematic method for evaluating mechanistic data to support conclusions regarding human hazard from exposure to carcinogens. OBJECTIVES AND METHODS: IARC therefore convened two workshops in which an international Working Group of experts identified 10 key characteristics, one or more of which are commonly exhibited by established human carcinogens. DISCUSSION: These characteristics provide the basis for an objective approach to identifying and organizing results from pertinent mechanistic studies. The 10 characteristics are the abilities of an agent to 1) act as an electrophile either directly or after metabolic activation; 2) be genotoxic; 3) alter DNA repair or cause genomic instability; 4) induce epigenetic alterations; 5) induce oxidative stress; 6) induce chronic inflammation; 7) be immunosuppressive; 8) modulate receptor-mediated effects; 9) cause immortalization; and 10) alter cell proliferation, cell death, or nutrient supply. CONCLUSION: We describe the use of the 10 key characteristics to conduct a systematic literature search focused on relevant end points and construct a graphical representation of the identified mechanistic information. Next, we use benzene and polychlorinated biphenyls as examples to illustrate how this approach may work in practice. The approach described is similar in many respects to those currently being implemented by the U.S. EPA's Integrated Risk Information System Program and the U.S. National Toxicology Program. CITATION: Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert P, Hecht SS, Bucher JR, Stewart BW, Baan R, Cogliano VJ, Straif K. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124:713-721; http://dx.doi.org/10.1289/ehp.1509912.


Subject(s)
Carcinogenicity Tests/methods , Carcinogens/toxicity , Animals , Benzene/toxicity , Carcinogenesis , Carcinogenicity Tests/standards , Carcinogens/standards , Humans , Polychlorinated Biphenyls/toxicity , Risk Assessment/methods , Risk Assessment/standards
9.
Environ Sci Pollut Res Int ; 23(3): 2220-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26077316

ABSTRACT

The IARC Monographs are a series of scientific reviews that identify environmental factors that can increase the risk of cancer in humans. In its first part, the principles and procedures of the IARC Monographs evaluations are summarized. In a second part, we present the most recent IARC evaluation of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), performed in February 2013: PCBs and dioxin-like PCBs were both classified into group 1 "carcinogens," while PBBs were evaluated as "probably carcinogenic to humans" (group 2A). Noteworthy is that the relative contributions of different PCB congeners to the carcinogenicity of PCB mixtures are not known. The use of mechanistic data for the classification into a higher category is discussed in the context of the history of the consecutive evaluations of several related polychlorinated compounds.


Subject(s)
Carcinogens/toxicity , Neoplasms/etiology , Polychlorinated Biphenyls/toxicity , Toxicology/organization & administration , Animals , Carcinogens/chemistry , Humans , Polychlorinated Biphenyls/chemistry , Toxicology/standards
16.
J Natl Cancer Inst ; 103(24): 1827-39, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22158127

ABSTRACT

Information on the causes of cancer at specific sites is important to cancer control planners, cancer researchers, cancer patients, and the general public. The International Agency for Research on Cancer (IARC) Monograph series, which has classified human carcinogens for more than 40 years, recently completed a review to provide up-to-date information on the cancer sites associated with more than 100 carcinogenic agents. Based on IARC's review, we listed the cancer sites associated with each agent and then rearranged this information to list the known and suspected causes of cancer at each site. We also summarized the rationale for classifications that were based on mechanistic data. This information, based on the forthcoming IARC Monographs Volume 100, offers insights into the current state-of-the-science of carcinogen identification. Use of mechanistic data to identify carcinogens is increasing, and epidemiological research is identifying additional carcinogens and cancer sites or confirming carcinogenic potential under conditions of lower exposure. Nevertheless, some common human cancers still have few (or no) identified causal agents.


Subject(s)
Carcinogens, Environmental/toxicity , Environmental Exposure/adverse effects , Neoplasms/etiology , Neoplasms/prevention & control , Alcohol Drinking/adverse effects , Global Health , Humans , International Agencies , Meat Products/adverse effects , Neoplasms/chemically induced , Neoplasms/epidemiology , Neoplasms/virology , Risk Factors , Smoking/adverse effects , Virus Diseases/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...