Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycorrhiza ; 19(5): 317-328, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19301039

ABSTRACT

Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae-coronatum and the G. caledonium-geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices.


Subject(s)
Agriculture , Biodiversity , Glomeromycota/isolation & purification , Mycorrhizae/isolation & purification , Onions/microbiology , Plant Roots/microbiology , Agriculture/methods , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Glomeromycota/classification , Glomeromycota/genetics , Glomeromycota/growth & development , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/growth & development , Netherlands , Phylogeny , Soil Microbiology
2.
FEMS Microbiol Ecol ; 45(1): 49-57, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-19719606

ABSTRACT

Abstract The number of fruiting bodies of ectomycorrhizal species in pine forests in The Netherlands has decreased dramatically in recent decades. This decrease has been attributed to an increase in nitrogen deposition and the accumulation of litter and humus. The effects of sod cutting and the removal of litter and humus, to restore ectomycorrhizal diversity in a Scots pine forest in Dwingeloo, The Netherlands, were investigated previously from 1990 to 1993. Removal of the litter and humus resulted in a significant increase in the numbers of species and fruiting bodies of ectomycorrhizal fungi. However, until now all data were obtained by counting fruiting bodies and the effects on mycelial development below ground were not assessed. To investigate hyphal development, DNA was extracted from bulk soil and polymerase chain reaction products were obtained by amplification using basidiomycete-specific internal transcribed spacer (ITS) primers. The differences in diversity between the control plots and the treated plots were analyzed using denaturing gradient gel electrophoresis. To assess the species composition and differences, ITS regions of the amplified fragments were cloned and sequenced. Sequences were compared with sequences from GenBank and from fruiting bodies collected from the same plots. Data indicated increased below-ground ectomycorrhizal diversity in the plots that had been subjected to removal of the litter and humus layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...