Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters











Publication year range
1.
J Cell Sci ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39257379

ABSTRACT

Association of tau with microtubules causes them to be labile while association of MAP6 with microtubules causes them to be stable. As axons differentiate and grow, tau and MAP6 segregate from one another on individual microtubules, resulting in the formation of stable and labile domains. The functional significance of the yin/yang relationship between tau and MAP6 remains speculative, with one idea being that such a relationship assists in balancing morphological stability with plasticity. Here, using primary rodent neuronal cultures, we show that tau depletion has opposite effects compared to MAP6 depletion on the rate of neuronal development, the efficiency of growth cone turning, and the number of neuronal processes and axonal branches. Opposite effects to those of tau depletion were also observed on the rate of neuronal migration, in an in vivo assay, when MAP6 was depleted. When tau and MAP6 were together depleted from neuronal cultures, the morphological phenotypes negated one another. Although tau and MAP6 are multifunctional proteins, our results suggest that the observed effects on neuronal development are likely due to their opposite roles in regulating microtubule stability.

2.
Cytoskeleton (Hoboken) ; 81(1): 7-9, 2024 01.
Article in English | MEDLINE | ID: mdl-37638689

Subject(s)
tau Proteins
3.
Cytoskeleton (Hoboken) ; 81(1): 41-46, 2024 01.
Article in English | MEDLINE | ID: mdl-37702426

ABSTRACT

The work of the Gulf War Illness (GWI) Consortium and that of basic and clinical researchers across the USA have resulted in a better understanding in recent years of the pathological basis of GWI, as well as of the mechanisms underlying the disorder. Among the most concerning symptoms suffered by veterans with GWI are cognitive decrements including those related to memory functioning. These decrements are not severe enough to meet dementia criteria, but there is significant concern that the mild cognitive impairment of these veterans will progress to dementia as they become older. Recent studies on GWI using human brain organoids as well as a rat model suggest that one potential cause of the cognitive problems may be elevated levels of tau in the brain, and this is supported by high levels of tau autoantibodies in the blood of veterans with GWI. There is urgency in finding treatments and preventive strategies for these veterans before they progress to dementia, with added value in doing so because their current status may represent an early phase of tauopathy common to many neurodegenerative diseases.


Subject(s)
Dementia , Persian Gulf Syndrome , Tauopathies , Veterans , Humans , Rats , Animals , Persian Gulf Syndrome/diagnosis , Persian Gulf Syndrome/therapy , Brain
4.
Cytoskeleton (Hoboken) ; 81(1): 57-62, 2024 01.
Article in English | MEDLINE | ID: mdl-37819557

ABSTRACT

Tau, one of the most abundant microtubule-associated protein in neurons plays a role in regulating microtubule dynamics in axons, as well as shaping the overall morphology of the axon. Recent studies challenge the traditional view of tau as a microtubule stabilizer and shed new light on the complexity of its role in regulating various properties of the microtubule. While reducing tau levels shows therapeutic promise for early tauopathies, efficacy wanes in later stages due to resilient toxic tau aggregates and neurofibrillary tangles. Notably, tauopathies involve factors beyond toxic tau alone, necessitating a broader therapeutic approach. Overexpression of human tau in mouse models, although useful for answering some questions, may not accurately reflect disease mechanisms in patients with tauopathies. Furthermore, the interplay between tau and MAP6, another microtubule-associated protein, adds complexity to tau's regulation of microtubule dynamics. Tau promotes the formation and elongation of labile microtubule domains, vital for cellular processes, while MAP6 stabilizes microtubules. A delicate balance between these proteins is important for neuronal function. Therefore, tau reduction therapies require a comprehensive understanding of disease progression, considering functional tau loss, toxic aggregates, and microtubule dynamics. Stage-dependent application and potential unintended consequences must be carefully evaluated. Restoring microtubule dynamics in late-stage tauopathies may necessitate alternative strategies. This knowledge is valuable for developing effective and safe treatments for tauopathies.


Subject(s)
Tauopathies , tau Proteins , Mice , Animals , Humans , tau Proteins/genetics , Tauopathies/drug therapy , Tauopathies/metabolism , Neurofibrillary Tangles/metabolism , Neurons/metabolism , Axons
5.
Brain Res Bull ; 192: 208-215, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442694

ABSTRACT

Microtubule disruption is a common downstream mechanism leading to axonal degeneration in a number of neurological diseases. To date, most studies on this topic have focused on the loss of microtubule mass from the axon, as well as changes in the stability properties of the microtubules and/or their tubulin composition. Here we posit corruption of the normal pattern of microtubule polarity orientation as an underappreciated and yet treatable contributor to axonal degeneration. We include computational modeling to fortify the rigor of our considerations. Our simulations demonstrate that even a small deviation from the usual polarity pattern of axonal microtubules is detrimental to motor-based trafficking of organelles and other intracellular cargo. Additional modeling predicts that axons with such deviations will exhibit significantly reduced speed and reliability of organelle transport, and that localized clusters of wrongly oriented microtubules will result in traffic jams of accumulated organelles.


Subject(s)
Axons , Microtubules , Reproducibility of Results
6.
J Neurosci ; 42(11): 2149-2165, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35046122

ABSTRACT

During neuronal migration, forces generated by cytoplasmic dynein yank on microtubules extending from the centrosome into the leading process and move the nucleus along microtubules that extend behind the centrosome. Scaffolds, such as radial glia, guide neuronal migration outward from the ventricles, but little is known about the internal machinery that ensures that the soma migrates along its proper path rather than moving backward or off the path. Here we report that depletion of KIFC1, a minus-end-directed kinesin called HSET in humans, causes neurons to migrate off their appropriate path, suggesting that this molecular motor is what ensures fidelity of the trajectory of migration. For these studies, we used rat migratory neurons in vitro and developing mouse brain in vivo, together with RNA interference and ectopic expression of mutant forms of KIFC1. We found that crosslinking of microtubules into a nonsliding mode by KIFC1 is necessary for dynein-driven forces to achieve sufficient traction to thrust the soma forward. Asymmetric bouts of microtubule sliding driven by KIFC1 thereby enable the soma to tilt in one direction or another, thus providing midcourse corrections that keep the neuron on its appropriate trajectory. KIFC1-driven sliding of microtubules further assists neurons in remaining on their appropriate path by allowing the nucleus to rotate directionally as it moves, which is consistent with how we found that KIFC1 contributes to interkinetic nuclear migration at an earlier stage of neuronal development.SIGNIFICANCE STATEMENT Resolving the mechanisms of neuronal migration is medically important because many developmental disorders of the brain involve flaws in neuronal migration and because deployment of newly born neurons may be important in the adult for cognition and memory. Drugs that inhibit KIFC1 are candidates for chemotherapy and therefore should be used with caution if they are allowed to enter the brain.


Subject(s)
Kinesins , Microtubules , Animals , Cell Movement , Cytoplasmic Dyneins/metabolism , Kinesins/genetics , Mice , Microtubules/metabolism , Neurons/physiology , Rats , beta Karyopherins
7.
Front Cell Neurosci ; 16: 979652, 2022.
Article in English | MEDLINE | ID: mdl-36619675

ABSTRACT

Approximately 30% of the veterans who fought in the 1991 Gulf War (GW) suffer from a disease called Gulf War Illness (GWI), which encompasses a constellation of symptoms including cognitive deficits. A coalescence of evidence indicates that GWI was caused by low-level exposure to organophosphate pesticides and nerve agents in combination with physical stressors of the battlefield. Until recently, progress on mechanisms and therapy had been limited to rodent-based models. Using peripheral blood mononuclear cells from veterans with or without GWI, we recently developed a bank of human induced pluripotent stem cells that can be differentiated into a variety of cellular fates. With these cells, we have now generated cerebral organoids, which are three-dimensional multicellular structures that resemble the human brain. We established organoid cultures from two GW veterans, one with GWI and one without. Immunohistochemical analyses indicate that these organoids, when treated with a GW toxicant regimen consisting of the organophosphate diisopropyl fluorophosphate (a sarin analog) and cortisol (to mimic battlefield stress), display multiple indicators consistent with cognitive deficits, including increased astrocytic reactivity, enhanced phosphorylation of tau proteins, decreased microtubule stability, and impaired neurogenesis. Interestingly, some of these phenotypes were more pronounced in the organoids derived from the veteran with GWI, potentially reflecting a stronger response to the toxicants in some individuals compared to others. These results suggest that veteran-derived human cerebral organoids not only can be used as an innovative human model to uncover the cellular responses to GW toxicants but can also serve as a platform for developing personalized medicine approaches for the veterans.

8.
Hum Mol Genet ; 31(11): 1844-1859, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34935948

ABSTRACT

Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.


Subject(s)
Spastic Paraplegia, Hereditary , Spastin , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Gain of Function Mutation , Humans , Loss of Function Mutation , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Spastin/genetics
9.
Cell Mol Life Sci ; 78(21-22): 6941-6961, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34580742

ABSTRACT

Gulf War Illness (GWI), a disorder suffered by approximately 200,000 veterans of the first Gulf War, was caused by exposure to low-level organophosphate pesticides and nerve agents in combination with battlefield stress. To elucidate the mechanistic basis of the brain-related symptoms of GWI, human-induced pluripotent stem cells (hiPSCs) derived from veterans with or without GWI were differentiated into forebrain glutamatergic neurons and then exposed to a Gulf War (GW) relevant toxicant regimen consisting of a sarin analog and cortisol, a human stress hormone. Elevated levels of total and phosphorylated tau, reduced microtubule acetylation, altered mitochondrial dynamics/transport, and decreased neuronal activity were observed in neurons exposed to the toxicant regimen. Some of the data are consistent with the possibility that some veterans may have been predisposed to acquire GWI. Wistar rats exposed to a similar toxicant regimen showed a mild learning and memory deficit, as well as cell loss and tau pathology selectively in the CA3 region of the hippocampus. These cellular responses offer a mechanistic explanation for the memory loss suffered by veterans with GWI and provide a cell-based model for screening drugs and developing personalized therapies for these veterans.


Subject(s)
Persian Gulf Syndrome/pathology , Animals , CA3 Region, Hippocampal/pathology , Cell Differentiation/physiology , Cells, Cultured , Disease Models, Animal , Gulf War , Humans , Induced Pluripotent Stem Cells/pathology , Male , Memory Disorders/pathology , Neurons/pathology , Rats , Rats, Wistar , Veterans
10.
Brain Sci ; 11(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439700

ABSTRACT

Mutations of the SPAST gene that encodes the microtubule-severing enzyme called spastin are the chief cause of Hereditary Spastic Paraplegia. Growing evidence indicates that pathogenic mutations functionally compromise the spastin protein and endow it with toxic gain-of-function properties. With each of these two factors potentially relevant to disease etiology, the present article discusses possible therapeutic strategies that may ameliorate symptoms in patients suffering from SPAST-based Hereditary Spastic Paraplegia, which is usually termed SPG4-HSP.

11.
Neurosci Insights ; 16: 26331055211020289, 2021.
Article in English | MEDLINE | ID: mdl-34104889

ABSTRACT

Among the various chemicals that are commonly used as pesticides, organophosphates (OPs), and to a lesser extent, carbamates, are most frequently associated with adverse long-term neurological consequences. OPs and the carbamate, pyridostigmine, used as a prophylactic drug against potential nerve agent attacks, have also been implicated in Gulf War Illness (GWI), which is often characterized by chronic neurological symptoms. While most OP- and carbamate-based pesticides, and pyridostigmine are relatively potent acetylcholinesterase inhibitors (AChEIs), this toxicological mechanism is inadequate to explain their long-term health effects, especially when no signs of acute cholinergic toxicity are exhibited. Our previous work suggests that a potential mechanism of the long-term neurological deficits associated with OPs is impairment of axonal transport (AXT); however, we had not previously evaluated carbamates for this effect. Here we thus evaluated the carbamate, physostigmine (PHY), a highly potent AChEI, on AXT using an in vitro neuronal live imaging assay that we have previously found to be very sensitive to OP-related deficits in AXT. We first evaluated the OP, diisopropylfluorophosphate (DFP) (concentration range 0.001-10.0 µM) as a reference compound that we found previously to impair AXT and subsequently evaluated PHY (concentration range 0.01-100 nM). As expected, DFP impaired AXT in a concentration-dependent manner, replicating our previously published results. In contrast, none of the concentrations of PHY (including concentrations well above the threshold for impairing AChE) impaired AXT. These data suggest that the long-term neurological deficits associated with some carbamates are not likely due to acute impairments of AXT.

12.
Neurosci Lett ; 753: 135867, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33812935

ABSTRACT

Microtubule sliding is an underappreciated mechanism that contributes to the establishment, organization, preservation, and plasticity of neuronal microtubule arrays. Powered by molecular motor proteins and regulated in part by static crosslinker proteins, microtubule sliding is the movement of microtubules relative to other microtubules or to non-microtubule structures such as the actin cytoskeleton. In addition to other important functions, microtubule sliding significantly contributes to the establishment and maintenance of microtubule polarity patterns in different regions of the neuron. The purpose of this article is to review the state of knowledge on microtubule sliding in the neuron, with emphasis on its mechanistic underpinnings as well as its functional significance.


Subject(s)
Axons/metabolism , Dendrites/metabolism , Microtubules/metabolism , Neurons/cytology , Animals , Cell Differentiation , Cell Movement , Cell Polarity , Dyneins/metabolism , Humans , Neurons/metabolism
13.
Nat Commun ; 11(1): 6131, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33257677

ABSTRACT

After a dorsal root crush injury, centrally-projecting sensory axons fail to regenerate across the dorsal root entry zone (DREZ) to extend into the spinal cord. We find that chemogenetic activation of adult dorsal root ganglion (DRG) neurons improves axon growth on an in vitro model of the inhibitory environment after injury. Moreover, repeated bouts of daily chemogenetic activation of adult DRG neurons for 12 weeks post-crush in vivo enhances axon regeneration across a chondroitinase-digested DREZ into spinal gray matter, where the regenerating axons form functional synapses and mediate behavioral recovery in a sensorimotor task. Neuronal activation-mediated axon extension is dependent upon changes in the status of tubulin post-translational modifications indicative of highly dynamic microtubules (as opposed to stable microtubules) within the distal axon, illuminating a novel mechanism underlying stimulation-mediated axon growth. We have identified an effective combinatory strategy to promote functionally-relevant axon regeneration of adult neurons into the CNS after injury.


Subject(s)
Axons/physiology , Crush Injuries/metabolism , Microtubules/physiology , Nerve Regeneration/physiology , Neurons/physiology , Spinal Nerve Roots/physiology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Crush Injuries/pathology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/injuries , Ganglia, Spinal/physiology , Rats , Rats, Wistar , Spinal Cord , Spinal Nerve Roots/pathology
14.
Trends Neurosci ; 43(7): 493-504, 2020 07.
Article in English | MEDLINE | ID: mdl-32434664

ABSTRACT

Tau, a microtubule-associated protein that modifies the dynamic properties and organization of microtubules in neurons and affects axonal transport, shows remarkable heterogeneity, with multiple isoforms (45-65 kDa) generated by alternative splicing. A high-molecular-weight (HMW) isoform (110 kDa) that contains an additional large exon termed 4a was discovered more than 25 years ago. This isoform, called Big tau, is expressed mainly in the adult peripheral nervous system (PNS), but also in adult neurons of the central nervous system (CNS) that extend processes into the periphery. Surprisingly little has been learned about Big tau since its initial characterization, leaving a significant gap in knowledge about how the dramatic switch to Big tau affects the properties of neurons in the context of development, disease, or injury. Here we review what was learned about the structure and distribution of Big tau in those earlier studies, and add contemporary insights to resurrect interest in the mysteries of Big tau and thereby set a path for future studies.


Subject(s)
Microtubules , tau Proteins , Central Nervous System , Humans , Neurons , Protein Isoforms
16.
Cytoskeleton (Hoboken) ; 76(4): 289-297, 2019 04.
Article in English | MEDLINE | ID: mdl-31108029

ABSTRACT

Mutations of the SPAST gene are the chief cause of hereditary spastic paraplegia. Controversy exists in the medical community as to whether the etiology of the disease is haploinsufficiency or toxic gain-of-function properties of the mutant spastin proteins. In recognition of strong reasons that support each possible mechanism, here we present a novel perspective, based in part on new studies with mouse models and in part on the largest study to date on patients with the disease. We posit that haploinsufficiency does not cause the disease but makes the corticospinal tracts vulnerable to a second hit, which is usually the mutant spastin proteins but could also be proteins generated by mutations of other genes that may or may not cause the disease on their own.


Subject(s)
Spastic Paraplegia, Hereditary/etiology , Female , Humans , Male
17.
Trends Cell Biol ; 29(6): 452-461, 2019 06.
Article in English | MEDLINE | ID: mdl-30929793

ABSTRACT

Tau is a multifunctional microtubule-associated protein in the neuron. For decades, tau's main function in neurons has been broadly accepted as stabilizing microtubules in the axon; however, this conclusion was reached mainly on the basis of studies performed in vitro and on ectopic expression of tau in non-neuronal cells. The idea has become so prevailing that some disease researchers are even seeking to use microtubule-stabilizing drugs to treat diseases in which tau dissociates from microtubules. Recent work suggests that tau is not a stabilizer of microtubules in the axon, but rather enables axonal microtubules to have long labile domains, in part by outcompeting genuine stabilizers. This new perspective on tau challenges long-standing dogma.


Subject(s)
tau Proteins/metabolism , Animals , Humans , Microtubules/metabolism , Neurons/metabolism
18.
J Neurosci ; 39(20): 3792-3811, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30804089

ABSTRACT

KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors.SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.


Subject(s)
Axons/physiology , Microtubules/physiology , Mitosis/physiology , beta Karyopherins/physiology , Animals , Cells, Cultured , Female , Growth Cones/physiology , Male , Rats, Sprague-Dawley
19.
J Neurosci ; 39(11): 2011-2024, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30647150

ABSTRACT

Fidgetin is a microtubule-severing protein that pares back the labile domains of microtubules in the axon. Experimental depletion of fidgetin results in elongation of the labile domains of microtubules and faster axonal growth. To test whether fidgetin knockdown assists axonal regeneration, we plated dissociated adult rat DRGs transduced using AAV5-shRNA-fidgetin on a laminin substrate with spots of aggrecan, a growth-inhibitory chondroitin sulfate proteoglycan. This cell culture assay mimics the glial scar formed after CNS injury. Aggrecan is more concentrated at the edge of the spot, such that axons growing from within the spot toward the edge encounter a concentration gradient that causes growth cones to become dystrophic and axons to retract or curve back on themselves. Fidgetin knockdown resulted in faster-growing axons on both laminin and aggrecan and enhanced crossing of axons from laminin onto aggrecan. Strikingly, axons from within the spot grew more avidly against the inhibitory aggrecan concentration gradient to cross onto laminin, without retracting or curving back. We also tested whether depleting fidgetin improves axonal regeneration in vivo after a dorsal root crush in adult female rats. Whereas control DRG neurons failed to extend axons across the dorsal root entry zone after injury, DRG neurons in which fidgetin was knocked down displayed enhanced regeneration of axons across the dorsal root entry zone into the spinal cord. Collectively, these results establish fidgetin as a novel therapeutic target to augment nerve regeneration and provide a workflow template by which microtubule-related targets can be compared in the future.SIGNIFICANCE STATEMENT Here we establish a workflow template from cell culture to animals in which microtubule-based treatments can be tested and compared with one another for their effectiveness in augmenting regeneration of injured axons relevant to spinal cord injury. The present work uses a viral transduction approach to knock down fidgetin from rat neurons, which coaxes nerve regeneration by elevating microtubule mass in their axons. Unlike previous strategies using microtubule-stabilizing drugs, fidgetin knockdown adds microtubule mass that is labile (rather than stable), thereby better recapitulating the growth status of a developing axon.


Subject(s)
ATPases Associated with Diverse Cellular Activities/physiology , Axons/physiology , Ganglia, Spinal/physiology , Microtubule-Associated Proteins/physiology , Microtubules/physiology , Nerve Regeneration/physiology , Nuclear Proteins/physiology , ATPases Associated with Diverse Cellular Activities/genetics , Aggrecans/physiology , Animals , Female , Gene Knockdown Techniques , Male , Mice, Transgenic , Microtubule-Associated Proteins/genetics , Neuroglia/physiology , Nuclear Proteins/genetics , Rats, Sprague-Dawley
20.
Hum Mol Genet ; 28(7): 1136-1152, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30520996

ABSTRACT

Mutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation. Expression of the mutant spastin was documented from fetus to adult, but gait defects reminiscent of HSP (not observed in spastin knockout mice) were adult onset, as is typical of human patients. Results of histological and tracer studies on the mouse are consistent with progressive dying back of corticospinal axons, which is characteristic of the disease. The C448Y-mutated spastin alters microtubule stability in a manner that is opposite to the expectations of haploinsufficiency. Neurons cultured from the mouse display deficits in organelle transport typical of axonal degenerative diseases, and these deficits were worsened by depletion of endogenous mouse spastin. These results on the SPASTC448Y mouse are consistent with a gain-of-function mechanism underlying HSP, with spastin haploinsufficiency exacerbating the toxicity of the mutant spastin proteins. These findings reveal the need for a different therapeutic approach than indicated by haploinsufficiency alone.


Subject(s)
Spastic Paraplegia, Hereditary/genetics , Spastin/genetics , Animals , Axonal Transport/physiology , Axons/metabolism , Disease Models, Animal , Gain of Function Mutation/genetics , Haploinsufficiency , Haplotypes , Mice , Mice, Transgenic , Microtubules/metabolism , Mutant Proteins/genetics , Mutation , Neurons/metabolism , Spastic Paraplegia, Hereditary/physiopathology , Spastin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL