Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Microb Ecol ; 63(4): 794-803, 2012 May.
Article in English | MEDLINE | ID: mdl-22076694

ABSTRACT

Our aim was to examine the effect of water stress on plant growth and development of two native plant species (Tetraclinis articulata and Crithmum maritimum) and on microbial community composition and activity in the rhizosphere soil, following the addition of an organic amendment, namely sugar beet residue (SBR), and/or the inoculation with an arbuscular mycorrhizal (AM) fungus, namely Glomus mosseae, in a non-sterile heavy metal-polluted soil. The AM inoculation did not have any significant effect on plant growth of both species. In T. articulata, SBR increased shoot growth, foliar P, total phospholipid fatty acids (PLFA), fungi-related PLFA, AM fungi-related neutral lipid fatty acid, bacterial gram-positive/gram-negative PLFA ratio and the ß-glucosidase and dehydrogenase activities. SBR and AM inoculation increased phosphatase activity in T. articulata plants grown under drought conditions. In both plants, there was a synergistic effect between AM inoculation and SBR on mycorrhizal colonisation under drought conditions. In C. maritimum, the increase produced by the SBR on total amounts of PLFA, bacterial gram-positive-related PLFA and bacterial gram-negative-related PLFA was considerably higher under drought conditions. Our results suggest that the effectiveness of the amendment with regard to stimulating microbial communities and plant growth was largely limited by drought, particularly for plant species with a low degree of mycorrhizal colonisation.


Subject(s)
Apiaceae/growth & development , Cupressaceae/growth & development , Glomeromycota/growth & development , Metals, Heavy/pharmacology , Mycorrhizae/growth & development , Soil Microbiology , Apiaceae/drug effects , Apiaceae/microbiology , Beta vulgaris/chemistry , Cupressaceae/drug effects , Cupressaceae/microbiology , Dehydration , Droughts , Plant Roots/growth & development , Plant Roots/microbiology , Soil Pollutants/pharmacology
2.
J Environ Qual ; 36(6): 1760-4, 2007.
Article in English | MEDLINE | ID: mdl-17965378

ABSTRACT

To detect effects of Cu pollution, the Cu tolerance of soil bacterial communities extracted from several vineyards located in NW Spain was measured. Bacterial community tolerance was estimated by means of the thymidine (TdR) and leucine (Leu) incorporation techniques using either IC(50) values (the log of the metal concentration that reduced incorporation to 50%) or the percentage of activity at one specific Cu concentration (10(-6) mol L(-1)). The tolerance measurements by the TdR incorporation technique were similar to those obtained by the Leu incorporation method, indicating that the two methods were equivalent in terms of suitability for detecting the toxicity of Cu to soil bacterial communities. The two tolerance indices considered (IC50 values and percentage of activity) were closely correlated (r = 0.975, P < 0.001), showing that both were equally good in measuring Cu tolerance of the bacterial community. An increased bacterial community tolerance to Cu, indicating a pollution effect, was observed in vineyard soils with more than 100 mg Cu kg(-1) soil. Thus, the long-term use of Cu in vineyards has a toxic effect on the soil bacterial community, resulting in an increased tolerance. An effect of increased levels of Cu could not be detected when measuring bacterial community activity, pointing to the increased sensitivity to detect toxicity in field studies using tolerance measurements.


Subject(s)
Copper/metabolism , Soil Microbiology , Wine , Spain , Thymidine/metabolism
3.
Microb Ecol ; 50(4): 496-505, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16328661

ABSTRACT

The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.


Subject(s)
Biomass , Ecosystem , Lead/analysis , Soil Microbiology , Soil/analysis , Bacteria/classification , Bacteria/drug effects , Bacteria/growth & development , Colony Count, Microbial , Fatty Acids/analysis , Fungi/classification , Fungi/drug effects , Fungi/growth & development , Hypocreales/drug effects , Hypocreales/growth & development , Lead/toxicity , Leucine/metabolism , Phospholipids/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Statistics as Topic , Trees
4.
Appl Environ Microbiol ; 70(5): 2966-73, 2004 May.
Article in English | MEDLINE | ID: mdl-15128558

ABSTRACT

Although the toxic effect of heavy metals on soil microorganism activity is well known, little is known about the effects on different organism groups. The influence of heavy metal addition on total, bacterial, and fungal activities was therefore studied for up to 60 days in a laboratory experiment using forest soil contaminated with different concentrations of Zn or Cu. The effects of the metals differed between the different activity measurements. During the first week after metal addition, the total activity (respiration rate) decreased by 30% at the highest level of contamination and then remained stable during the 60 days of incubation. The bacterial activity (thymidine incorporation rate) decreased during the first days with the level of metal contamination, resulting in a 90% decrease at the highest level of contamination. Bacterial activity then slowly recovered to values similar to those of the control soil. The recovery was faster when soil pH, which had decreased due to metal addition, was restored to control values by liming. Fungal activity (acetate-in-ergosterol incorporation rate) initially increased with the level of metal contamination, being up to 3 and 7 times higher than that in the control samples during the first week at the highest levels of Zn and Cu addition, respectively. The positive effect of metal addition on fungal activity then decreased, but fungal activity was still higher in contaminated than in control soil after 35 days. This is the first direct evidence that fungal and bacterial activities in soil are differently affected by heavy metals. The different responses of bacteria and fungi to heavy metals were reflected in an increase in the relative fungal/bacterial ratio (estimated using phospholipid fatty acid analysis) with increased metal load.


Subject(s)
Bacteria/metabolism , Copper/toxicity , Fungi/metabolism , Metals, Heavy/toxicity , Soil Microbiology , Zinc/toxicity , Bacteria/drug effects , Bacteria/growth & development , Biomass , Ecosystem , Fungi/drug effects , Fungi/growth & development , Hydrogen-Ion Concentration , Soil Pollutants/toxicity , Trees
5.
Microb Ecol ; 45(4): 373-83, 2003 May.
Article in English | MEDLINE | ID: mdl-12704558

ABSTRACT

The usefulness of measuring neutral lipid fatty acids (NLFAs) and phospholipid fatty acids (PLFAs) separately in order to interpret perturbation effects on soil and compost microorganisms has been studied. Initially the NLFA/PLFA ratios were studied in different soils. Low ratios were found for fatty acids common in bacteria, especially for cyclopropane fatty acids. Higher ratios were found for fatty acids common in eukaryotic organisms such as fungi (18:1omega9 and 18:2omega6,9) or in saturated fatty acids, common to many types of organisms. Adding glucose to a forest soil increased the amounts of the fungal NLFAs 18:1omega9 and 18:2 omega6,9 up to 60 and 10 times, respectively, after 10 days, followed by a gradual decrease. After 3 months incubation, higher levels of these NLFAs were still found compared with the control samples. Adding glucose together with nitrogen (N) and phosphorus (P) resulted in no increase in NLFAs but a 10-fold increase in the PLFAs 18:1omega9 and 18:2omega6,9. Thus, the NLFA/PLFA ratios for these fatty acids were lower than in the no-addition control when glucose was added together with N and P, but higher when glucose was added alone, even 3 months after the addition. Adding N+P without glucose did not affect the NLFA/PLFA ratio for any fatty acid. Increasing NLFA/PLFA ratios for the fungal fatty acids were also found with time after the thermophilic phase in a compost, indicating increased availability of easily available carbon.


Subject(s)
Biomarkers/analysis , Environmental Monitoring/methods , Fatty Acids/analysis , Fungi/physiology , Soil Microbiology , Carbon/metabolism , Fungi/chemistry , Glucose/metabolism , Phosphorus/metabolism , Population Dynamics
6.
Microb Ecol ; 46(2): 177-86, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14708743

ABSTRACT

The response of a bacterial community to liming of a forest humus soil (pH 4.9 increased to pH 7.5) was studied in the laboratory at three temperatures (5, 20, and 30 degrees C). As a comparison an unlimed soil (pH 4.9) and a soil limed in the field 15 years ago (pH around 6) were also included. The bacterial community tolerance of pH was measured using TdR incorporation. The pH of the bacterial suspensions (bacteria directly extracted from soil) was altered to 3.6 and 8.3 using different buffers before measuring TdR incorporation. The logarithmic ratio between TdR incorporation at 8.3 and 3.6 was then used as an indicator of the community pH tolerance. The rate of changes in the community tolerance to pH after liming was fastest for the soil incubated at 30 degrees C, but only minor differences in rate of change could be seen between samples incubated at 5 and 20 degrees C. Changes in phospholipid fatty acid (PLFA) pattern after increasing the pH were most rapid for the bacterial community in the soil incubated at 30 degrees C followed by the soil incubated at 20 degrees C, whereas no changes could be seen in the PLFA pattern of the soil incubated at 5 degrees C, even after 82 days' incubation. Thus, the changes in the PLFA pattern were considerably slower than the changes in bacterial community tolerance to pH measured using TdR incorporation.


Subject(s)
Adaptation, Physiological , Soil Microbiology , Bacteria , Calcium Compounds , Fatty Acids/analysis , Fatty Acids/metabolism , Hydrogen-Ion Concentration , Oxides , Phospholipids/analysis , Phospholipids/metabolism , Population Dynamics , Temperature , Trees
7.
Microb Ecol ; 41(3): 272-280, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11391465

ABSTRACT

Shredded straw of Miscanthus was composted in 800-L boxes with different amounts of pig slurry added as nitrogen source. The impact of the different initial C/N ratios (11, 35, 47, 50, and 54) on the composting process and the end product was evaluated by examining chemical and microbiological parameters during 12 months of composting. Low initial C/N ratios caused a fast degradation of fibers during the first three months of composting (hemicellulose: 50-80%, cellulose: 40-60%), while high initial C/N ratios resulted in 10-20% degradation of both hemicellulose and cellulose. These differences were reflected in the microbial biomass and respiration, which initially were higher in low C/N treatments than in high C/N treatments. After 12 months of composting, this situation was reversed. Composts with high initial C/N ratios had high microbial biomass (15-20 mg ATP g-1 OM) and respiration rates (200 mg CO2 h-1 g-1 OM) compared to treatments with low initial C/N ratios (less than 10 mg ATP g-1 OM and 25 mg CO2 h-1 g-1 OM). This could be explained by the microorganisms being nitrogen limited in the high C/N ratio treatments. In the low C/N ratio treatments, without nitrogen limitation, the high activity in the beginning decreased with time because of exhaustion of easily available carbon. Different nitrogen availability was also seen in the nitrification patterns, since nitrate was only measured in significant amounts in the treatments with initial C/N ratios of 11 and 35. The microbial community structure (measured as phospholipid fatty acid, PLFA, profile) was also affected by the initial C/N ratios, with lower fungal/bacterial ratios in the low compared to the high C/N treatments after 12 months of composting. However, in the low C/N treatments higher levels of PLFAs indicative of thermophilic gram-positive bacteria were found compared to the high C/N treatments. This was caused by the initial heating phase being longer in the low than in the high C/N treatments. The different fungal/bacterial ratios could also be explained by the initial heating phase, since a significant correlation between this ratio and heat generated during the initial composting phase was found.

8.
Can J Microbiol ; 47(4): 302-8, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11358169

ABSTRACT

Sole carbon source utilization (SCSU) patterns and phospholipid fatty acid (PLFA) profiles were compared with respect to their potential to characterize root-inhabiting microbial communities of hydroponically grown crops. Sweet pepper (Capsicum annum cv. Evident), lettuce (Lactuca sativa cv. Grand Rapids), and four different cultivars of tomato (Lycopersicon esculentum cvs. Gitana, Armada, Aromata, and Elin) were grown in 1-L black plastic beakers placed in a cultivation chamber with artificial light. In addition to the harvest of the plants after 6 weeks, plants of one tomato cultivar, cv. Gitana, were also harvested after 4 and 8 weeks. The cultivation in this study was performed twice. Principal component analysis was used to analyze the data. Both characterization methods had the ability to discriminate between the root microflora of different plant species, cultivars, and one tomato cultivar at different ages. Differences in both SCSU patterns and PLFA profiles were larger between plant species than between cultivars, but for both methods the largest differences were between the two cultivations. Still, the differences between treatments were always due to differences in the same PLFAs in both cultivations. This was not the case for the SCSU patterns when different plant ages were studied. Furthermore, PLFA profiles showed less variation between replicates than did SCSU patterns. This larger variation observed among the SCSU data indicates that PLFA may be more useful to detect changes in the root microflora of hydroponically grown crops than the SCSU technique.


Subject(s)
Carbon/metabolism , Crops, Agricultural/microbiology , Fatty Acids/biosynthesis , Hydroponics , Phospholipids/metabolism , Plant Roots/microbiology , Capsicum/microbiology , Crops, Agricultural/metabolism , Fatty Acids/analysis , Lactuca/microbiology , Solanum lycopersicum/microbiology , Multivariate Analysis , Plant Roots/metabolism , Plants, Medicinal
9.
Appl Environ Microbiol ; 67(4): 1830-8, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282640

ABSTRACT

A technique to determine which nutrients limit bacterial growth in soil was developed. The method was based on measuring the thymidine incorporation rate of bacteria after the addition of C, N, and P in different combinations to soil samples. First, the thymidine incorporation method was tested in two different soils: an agricultural soil and a forest humus soil. Carbon (as glucose) was found to be the limiting substance for bacterial growth in both of these soils. The effect of adding different amounts of nutrients was studied, and tests were performed to determine whether the additions affected the soil pH and subsequent bacterial activity. The incubation time required to detect bacterial growth after adding substrate to the soil was also evaluated. Second, the method was used in experiments in which three different size fractions of straw (1 to 2, 0.25 to 1, and <0.25 mm) were mixed into the agricultural soil in order to induce N limitation for bacterial growth. When the straw fraction was small enough (<0.25 mm), N became the limiting nutrient for bacterial growth after about 3 weeks. After the addition of the larger straw fractions (1 to 2 and 0.25 to 1 mm), the soil bacteria were C limited throughout the incubation period (10 weeks), although an increase in the thymidine incorporation rate after the addition of C and N together compared with adding them separately was seen in the sample containing the size fraction from 0.25 to 1 mm. Third, soils from high-pH, limestone-rich areas were examined. P limitation was observed in one of these soils, while tendencies toward P limitation were seen in some of the other soils.


Subject(s)
Bacteria/growth & development , Leucine/metabolism , Soil Microbiology , Thymidine/metabolism , Agriculture , Carbon/metabolism , Hydrogen-Ion Concentration , Nitrogen/metabolism , Phosphorus/metabolism , Trees
10.
Appl Environ Microbiol ; 67(3): 1116-22, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11229900

ABSTRACT

The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25 degrees C to 35, 45, or 55 degrees C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55 degrees C (thermophilic activity) and 25 degrees C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25 degrees C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log(10) ratio of TdR incorporation at 55 and 25 degrees C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55 degrees C 3 or 11 days before incubation at 25 degrees C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community.


Subject(s)
Adaptation, Physiological , Bacteria/metabolism , Soil Microbiology , Bacteria/growth & development , Ecosystem , Leucine/metabolism , Temperature , Thymidine/metabolism
11.
Microb Ecol ; 38(2): 168-179, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10441709

ABSTRACT

> Abstract The structure, biomass, and activity of the microbial community in the humus layer of boreal coniferous forest stands of different fertility were studied. The Scots pine dominated CT (Calluna vulgaris type) represented the lowest fertility, while VT (Vaccinium vitis-idaéa type), MT (Vaccinium myrtillus type), and OMT (Oxalis acetocella-Vaccinium myrtillus type) following this order, were more fertile types. The microbial community was studied more closely by sampling a succession gradient (from a treeless area to a 180-years-old Norway spruce stand) at the MT type site. The phospholipid fatty acid (PLFA) analysis revealed a gradual shift in the structure of the microbial community along the fertility gradient even though the total microbial biomass and respiration rate remained unchanged. The relative abundance of fungi decreased and that of bacteria increased with increasing fertility. The structure of the bacterial community also changed along the fertility gradient. Irrespective of a decrease in fungal biomass and change in bacterial community structure after clear-cutting, the PLFA analysis did not show strong differences in the microbial communities in the stands of different age growing on the MT type site. The spatial variation in the structure of the microbial community was studied at a MT type site. Semivariograms indicated that the bacterial biomass, the ratio between the fungal and bacterial biomasses, and the relative amount of PLFA 16:1omega5 were spatially autocorrelated within distances around 3 to 4 m. The total microbial and fungal biomasses were autocorrelated only up to 1 m. The spatial distribution of the humus microbial community was correlated mainly with the location of the trees, and consequently, with the forest floor vegetation.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p168.html

12.
J Microbiol Methods ; 36(1-2): 45-54, 1999 May.
Article in English | MEDLINE | ID: mdl-10353799

ABSTRACT

Plants in artificial tropical ecosystems were grown under ambient (340 microl l(-1)) and elevated (610 microl l(-1)) atmospheric CO2 for 530 d under low-nutrient conditions on a substrate free of organic C. At the end of the experiment a number of soil chemical and microbiological variables were determined. Although we found no changes in total soil organic matter under elevated CO2, we did find that after physical fractionation the amount of organic C in the supernatant (< 0.2 microm) and the amount of water extractable organic C (WEOC) was lower under elevated CO2. The extractable optical density (OD) indicated a higher degree of humification for the elevated than for the ambient CO2 samples (P = 0.032). Microbial biomass C was not significantly altered under high CO2, but total bacterial counts were significantly higher. The microbial biomass C-to-N ratio was also higher at elevated (15.0) than at ambient CO2 (10.0). The number of mycorrhizal spores was lower at high CO2, but ergosterol contents and fungal hyphal lengths were not significantly affected. Changes were found neither in community level physiological profiles (CLPPs) nor in the structural attributes (phospholipid fatty acids, PLFAs) of the microbial community. Overall, the effects on the soil microbiota were small, perhaps as a result of the low nutrient supply and low organic matter content of the soil used in our study. The few significant results showing changes in specific, though relatively minor, organic matter pools may point to possible long-term changes of the more major pools. Furthermore, the data suggest increased competition between plants and microbes for N at high CO2.


Subject(s)
Bacterial Physiological Phenomena , Carbon Dioxide/metabolism , Ecosystem , Fungi/physiology , Soil Microbiology , Tropical Climate , Biomass , Carbon/analysis , Colony Count, Microbial , Phospholipids/metabolism , Plant Development , Spores, Fungal/physiology
13.
Microb Ecol ; 36(3): 316-327, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9852511

ABSTRACT

Abstract The growth rate of bacteria in 19 soils with pH values ranging from 4 to 8 was determined using the thymidine (TdR) and leucine (Leu) incorporation techniques. The variation in isotope dilution and unspecific incorporation was also studied. The mean Leu incorporation into protein was 45% of the incorporation into total macromolecules, and was not affected by soil pH. TdR incorporation into DNA varied between 5 and 20% of that into total macromolecules, with the lowest values in the low-pH soils. Isotope dilution plots for Leu incorporation were linear. This was not the case for TdR incorporation, indicating non-Michaelis-Menten kinetics. The degree of participation (DP) of the added labeled compound in Leu incorporation varied between 0.4 (in low-pH soils) and 0.7 and was directly affected by pH. DP for TdR incorporation varied more (from 0.1 to 1), with the lowest values in the low-pH soils. The variation in DP in TdR incorporation was, however, not directly affected by pH. Calculated bacterial turnover times at 20 degreesC varied between 2.3 and 33 days (mean 9.3 days) using TdR incorporation data, and between 2.1 and 13.1 days (mean 5.9 days) using Leu incorporation data. Turnover times were longer for bacteria in low-pH soils, calculated using the Leu incroporation data, while no effect from pH was found using the TdR incorporation data. Comparing data from aquatic habitats indicated that bacterial growth rates in soil were lower.

14.
Appl Environ Microbiol ; 64(6): 2173-80, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9603831

ABSTRACT

Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found.

15.
Appl Environ Microbiol ; 64(1): 238-45, 1998 Jan.
Article in English | MEDLINE | ID: mdl-16349483

ABSTRACT

The effects of heavy-metal-containing sewage sludge on the soil microbial community were studied in two agricultural soils of different textures, which had been contaminated separately with three predominantly single metals (Cu, Zn, and Ni) at two different levels more than 20 years ago. We compared three community-based microbiological measurements, namely, phospholipid fatty acid (PLFA) analysis to reveal changes in species composition, the Biolog system to indicate metabolic fingerprints of microbial communities, and the thymidine incorporation technique to measure bacterial community tolerance. In the Luddington soil, bacterial community tolerance increased in all metal treatments compared to an unpolluted-sludge-treated control soil. Community tolerance to specific metals increased the most when the same metal was added to the soil; for example, tolerance to Cu increased most in Cu-polluted treatments. A dose-response effect was also evident. There were also indications of cotolerance to metals whose concentration had not been elevated by the sludge treatment. The PLFA pattern changed in all metal treatments, but the interpretation was complicated by the soil moisture content, which also affected the results. The Biolog measurements indicated similar effects of metals and moisture to the PLFA measurements, but due to high variation between replicates, no significant differences compared to the uncontaminated control were found. In the Lee Valley soil, significant increases in community tolerance were found for the high levels of Cu and Zn, while the PLFA pattern was significantly altered for the soils with high levels of Cu, Ni, and Zn. No effects on the Biolog measurements were found in this soil.

16.
Appl Environ Microbiol ; 63(6): 2224-31, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9172342

ABSTRACT

Microbial community dynamics associated with manure hot spots were studied by using a model system consisting of a gel-stabilized mixture of soil and manure, placed between layers of soil, during a 3-week incubation period. The microbial biomass, measured as the total amount of phospholipid fatty acids (PLFA), had doubled within a 2-mm distance from the soil-manure interface after 3 days. Principal-component analyses demonstrated that this increase was accompanied by reproducible changes in the composition of PLFA, indicating changes in the microbial community structure. The effect of the manure was strongest in the 2-mm-thick soil layer closest to the interface, in which the PLFA composition was statistically significantly different (P < 0.05) from that of the unaffected soil layers throughout the incubation period. An effect was also observed in the soil layer 2 to 4 mm from the interface. The changes in microbial biomass and community structure were mainly attributed to the diffusion of dissolved organic carbon from the manure. During the initial period of microbial growth, PLFA, which were already more abundant in the manure than in the soil, increased in the manure core and in the 2-mm soil layer closest to the interface. After day 3, the PLFA composition of these layers gradually became more similar to that of the soil. The dynamics of individual PLFA suggested that both taxonomic and physiological changes occurred during growth. Examples of the latter were decreases in the ratios of 16:1 omega 7t to 16:1 omega 7c and of cyclopropyl fatty acids to their respective precursors, indicating a more active bacterial community. An inverse relationship between bacterial PLFA and the eucaryotic 20:4 PLFA (arachidonic acid) suggested that grazing was important.


Subject(s)
Cattle/microbiology , Fatty Acids/analysis , Feces/microbiology , Phospholipids/analysis , Animals , Biomass , Ecosystem , Feces/chemistry , Soil/analysis , Soil Microbiology , Time Factors
17.
Appl Environ Microbiol ; 63(9): 3531-8, 1997 Sep.
Article in English | MEDLINE | ID: mdl-16535691

ABSTRACT

The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1(omega)5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1(omega)5 in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1(omega)5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely with neutral lipid fatty acid 16:1(omega)5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1(omega)5. The fungal neutral lipid/phospholipid ratio in the extraradical mycelium was positively correlated with the level of root infection and thus decreased with increasing applications of P. The neutral lipid/phospholipid ratio indicated that at high P levels, less carbon was allocated to storage structures. At all levels of P applied, the major part of the AM fungus was found to be present outside the roots, as estimated from phospholipid fatty acid 16:1(omega)5. The ratio of extraradical biomass/intraradical biomass was not affected by the application of P, except for a decrease at the highest level of P applied.

18.
Appl Environ Microbiol ; 62(8): 2970-7, 1996 Aug.
Article in English | MEDLINE | ID: mdl-16535383

ABSTRACT

The development of metal tolerance in soil bacterial communities exposed to different heavy metals was examined under laboratory conditions. An agricultural soil amended with different Zn concentrations was studied most intensively, and measurements were made over a 28-month incubation period by means of the thymidine incorporation technique. Tolerance levels were not affected by metal concentrations lower than 2 mmol of Zn kg (dry weight) of soil(sup-1), but above this value, the level of Zn tolerance increased exponentially with the logarithm of the soil Zn concentration. An increased metal tolerance was detected after only 2 days of Zn exposure. Thereafter, stable tolerance values were observed at different sampling times for bacterial communities exposed to up to 8 mmol of Zn kg (dry weight)(sup-1), indicating no changes in tolerance with time. The tolerance of bacterial communities exposed to 32 mmol of Zn kg (dry weight)(sup-1) increased rapidly within the second week of incubation, but then the values remained unchanged until the end of the experiment. Bacterial communities from soil contaminated with 16 mmol of Zn kg (dry weight)(sup-1) showed an increase of the same magnitude, but the increase started later, after 4 months of incubation, and took place for a much longer period (more than 1 year). Cd, Cu, and Ni addition also resulted in metal-tolerant communities, and the level of tolerance increased with prolonged incubations of the soils. The bacterial community at the end of the incubation period also exhibited a lower pH optimum and an increased tolerance to low osmotic potential. The results suggest that the increase in metal tolerance of the community after adding metals can be attributed to an immediate effect due to the death of sensitive species and a later effect due to different competitive abilities and adaptation of surviving bacteria.

19.
Appl Environ Microbiol ; 62(2): 420-8, 1996 Feb.
Article in English | MEDLINE | ID: mdl-16535230

ABSTRACT

The effects of long-term heavy metal deposition on microbial community structure and the level of bacterial community tolerance were studied along two different gradients in Scandinavian coniferous forest soils. One was near the Harjavalta smelter in Finland, and one was at Ronnskar in Sweden. Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites. The relative quantities of the PLFAs br18:0, br17:0, i16:0, and i16:1 increased with increasing heavy metal concentration, while those of 20:4 and 18:2(omega)6, which is a predominant PLFA in many fungi, decreased. The fungal part of the microbial biomass was found to be more sensitive to heavy metals. This resulted in a decreased fungal/bacterial biomass ratio along the pollution gradient towards the smelters. The thymidine incorporation technique was used to study the heavy metal tolerance of the bacteria. The bacterial community at the Harjavalta smelter, exposed mainly to Cu deposition, exhibited an increased tolerance to Cu but not to Cd, Ni, and Zn. At the Ronnskar smelter the deposition consisting of a mixture of metals increased the bacterial community tolerance to all tested metals. Both the PLFA pattern and the bacterial community tolerance were affected at lower soil metal concentrations than were bacterial counts and bacterial activities. At Harjavalta the increased Cu tolerance of the bacteria and the change in the PLFA pattern of the microbial community were found at the same soil Cu concentrations. This indicated that the altered PLFA pattern was at least partly due to an altered, more metal-tolerant bacterial community. At Ronnskar, where the PLFA data varied more, a correlation between bacterial community tolerance and an altered PLFA pattern was found up to 10 to 15 km from the smelter. Farther away changes in the PLFA pattern could not be explained by an increased community tolerance to metals.

20.
Microb Ecol ; 31(2): 153-66, 1996 Mar.
Article in English | MEDLINE | ID: mdl-24185739

ABSTRACT

Bacteria were sequentially extracted from soil into a water suspension after shaking soil with water or mixing it in a blender followed by a low-speed centrifugation. Bacteria, which were released only after several cycles of homogenization-centrifugation, had higher growth rates as judged from thymidine and leucine incorporation, whereas bacteria that were more readily released by a gentle shaking procedure had the lowest growth rate. This indicated that bacteria more tightly bound to soil particles were growing faster than those that were more easily released into the water suspension. The same pattern was found both in an agricultural and a forest soil, with contrasting pH and organic matter content, and irrespective of whether the bacteria were labeled before or after the centrifugation steps. The different growth rates of the bacteria could not be explained by different partitioning of label between different macromolecules, different cell size, different viability of the bacteria, or different dilution of the added radioactive substrate in the different homogenization-centrifugation fractions. The total amount of phospholipid fatty acids per bacterial cell was also similar in the different fractions. Different composition of the bacterial communities in the different homogenization-centrifugation fractions was indicated by a gradually altered phospholipid fatty acid pattern of the extracted bacteria, and an increased hydrophobicity of the bacteria released only after several homogenization-centrifugation treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...