Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Chem Biol Interact ; 395: 110973, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38574837

ABSTRACT

The first organophosphorus nerve agent was discovered accidently during the development of pesticides, shortly after the first use of chemical weapons (chlorine, phosgene) on the battlefield during World War I. Despite the Chemical Weapons Convention banning these substances, they have still been employed in wars, terrorist attacks or political assassinations. Characterised by their high lethality, they target the nervous system by inhibiting the acetylcholinesterase (AChE) enzyme, preventing neurotransmission, which, if not treated rapidly, inevitably leads to serious injury or the death of the person intoxicated. The limited efficacy of current antidotes, known as AChE reactivators, pushes research towards new treatments. Numerous paths have been explored, from modifying the original pyridinium oximes to developing hybrid reactivators seeking a better affinity for the inhibited AChE. Another crucial approach resides in molecules more prone to cross the blood-brain barrier: uncharged compounds, bio-conjugated reactivators or innovative formulations. Our aim is to raise awareness on the threat and toxicity of organophosphorus nerve agents and to present the main synthetic efforts deployed since the first AChE reactivator, to tackle the task of efficiently treating victims of these chemical warfare agents.


Subject(s)
Nerve Agents , Organophosphorus Compounds , Humans , Nerve Agents/toxicity , Organophosphorus Compounds/toxicity , Animals , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/therapeutic use , Cholinesterase Reactivators/chemistry , Medical Countermeasures , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/toxicity , Chemical Warfare Agents/toxicity , Antidotes/pharmacology , Antidotes/therapeutic use , Oximes/pharmacology , Oximes/therapeutic use , Oximes/chemistry
2.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417730

ABSTRACT

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Subject(s)
Chemical Warfare Agents , Cholinesterase Reactivators , Nerve Agents , Humans , Mice , Animals , Cholinesterase Reactivators/pharmacology , Cholinesterase Reactivators/therapeutic use , Cholinesterase Reactivators/chemistry , Nerve Agents/toxicity , No-Observed-Adverse-Effect Level , Chemical Warfare Agents/toxicity , Oximes/pharmacology , Oximes/therapeutic use , Oximes/chemistry , Pyridinium Compounds/pharmacology , Cholinesterase Inhibitors/toxicity , Cholinesterase Inhibitors/chemistry , Cholinesterases , Acetylcholinesterase , Antidotes/pharmacology , Antidotes/therapeutic use
3.
Chem Commun (Camb) ; 59(15): 2098-2101, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36723238

ABSTRACT

A novel cobalt corrole bearing 4-vinylphenyl groups at the 5,10,15-meso-positions of the macrocycle has been synthesized from tris(4-bromophenyl)corrole using a Suzuki coupling reaction. The spectral and electrochemical properties are reported in CH2Cl2 along with its ability to form a highly stable six-coordinate complex and cross-linked corrole-based polymer in a 59% yield.

4.
Biomedicines ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35625901

ABSTRACT

Anxiety disorder is one of the most reported complications following organophosphorus (OP) nerve agent (NA) exposure. The goal of this study was to characterize the long-term behavioral impact of a single low dose exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. We chose two different sublethal doses of NIMP, each corresponding to a fraction of the median lethal dose (one mild and one convulsive), and evaluated behavioral changes over a 6-month period following exposure. Mice exposed to both doses showed anxious behavior which persisted for six-months post-exposure. A longitudinal magnetic resonance imaging examination did not reveal any anatomical changes in the amygdala throughout the 6-month period. While no cholinesterase activity change or neuroinflammation could be observed at the latest timepoint in the amygdala of NIMP-exposed mice, important modifications in white blood cell counts were noted, reflecting a perturbation of the systemic immune system. Furthermore, intestinal inflammation and microbiota changes were observed at 6-months in NIMP-exposed animals regardless of the dose received. This is the first study to identify long-term behavioral impairment, systemic homeostasis disorganization and gut microbiota alterations following OP sublethal exposure. Our findings highlight the importance of long-term care for victims of NA exposure, even in asymptomatic cases.

5.
J Med Chem ; 65(6): 4649-4666, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35255209

ABSTRACT

Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.


Subject(s)
Organophosphate Poisoning , Acetylcholinesterase , Animals , Antidotes/pharmacology , Antidotes/therapeutic use , Cholinesterase Inhibitors/pharmacology , Mice , Organophosphate Poisoning/drug therapy , Organophosphorus Compounds/pharmacology , Oximes/chemistry , Oximes/pharmacology , Oximes/therapeutic use , Sugars
6.
ACS Chem Neurosci ; 12(15): 2865-2877, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34284583

ABSTRACT

Organophosphorus (OP) cholinesterase inhibitors, which include insecticides and chemical warfare nerve agents, are very potent neurotoxicants. Given that the actual treatment has several limitations, the present study provides a general method, called the zebrafish-OP-antidote test (ZOAT), and basic scientific data, to identify new antidotes that are more effective than the reference pyridinium oximes after acute OP poisoning. The reactivation capacity of a chemical compound can be measured using in vivo and ex vivo acetylcholinesterase (AChE) assays. We demonstrated that it is possible to differentiate between chemical compound protective efficacies in the central and peripheral nervous system via the visual motor response and electric field pulse motor response tests, respectively. Moreover, the ability to cross the brain-blood barrier can be estimated in a physiological context by combining an AChE assay on the head and trunk-tail fractions and the cellular and tissue localization of AChE activity in the whole-mount animal. ZOAT is an innovative method suitable for the screening and rapid identification of chemicals and mixtures used as antidote for OP poisoning. The method will make it easier to identify more effective medical countermeasures for chemical threat agents, including combinatorial therapies.


Subject(s)
Cholinesterase Reactivators , Organophosphate Poisoning , Acetylcholinesterase , Animals , Antidotes/pharmacology , Cholinesterase Inhibitors/pharmacology , Cholinesterase Reactivators/pharmacology , Larva , Organophosphate Poisoning/drug therapy , Oximes , Zebrafish
7.
Toxicology ; 456: 152787, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33887375

ABSTRACT

Warfare neurotoxicants such as sarin, soman or VX, are organophosphorus compounds which irreversibly inhibit cholinesterase. High-dose exposure with nerve agents (NA) is known to produce seizure activity and related brain damage, while less is known about the effects of acute sub-lethal dose exposure. The aim of this study was to characterize behavioral, brain activity and neuroinflammatory modifications at different time points after exposure to 4-nitrophenyl isopropyl methylphosphonate (NIMP), a sarin surrogate. In order to decipher the impacts of sub-lethal exposure, we chose 4 different doses of NIMP each corresponding to a fraction of the median lethal dose (LD50). First, we conducted a behavioral analysis of symptoms during the first hour following NIMP challenge and established a specific scoring scale for the intoxication severity. The intensity of intoxication signs was dose-dependent and proportional to the cholinesterase activity inhibition evaluated in mice brain. The lowest dose (0.3 LD50) did not induce significant behavioral, electrocorticographic (ECoG) nor cholinesterase activity changes. Animals exposed to one of the other doses (0.5, 0.7 and 0.9 LD50) exhibited substantial changes in behavior, significant cholinesterase activity inhibition, and a disruption of brainwave distribution that persisted in a dose-dependent manner. To evaluate long lasting changes, we conducted ECoG recording for 30 days on mice exposed to 0.5 or 0.9 LD50 of NIMP. Mice in both groups showed long-lasting impairment of theta rhythms, and a lack of restoration in hippocampal ChE activity after 1-month post-exposure. In addition, an increase in neuroinflammatory markers (IBA-1, TNF-α, NF-κB) and edema were transiently observed in mice hippocampus. Furthermore, a novel object recognition test showed an alteration of short-term memory in both groups, 1-month post-NIMP intoxication. Our findings identified both transient and long-term ECoG alterations and some long term cognitive impairments following exposure to sub-lethal doses of NIMP. These may further impact morphopathological alterations in the brain.


Subject(s)
Brain Waves/drug effects , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Cognitive Dysfunction/chemically induced , Sarin/toxicity , Animals , Brain Waves/physiology , Cholinesterase Inhibitors/administration & dosage , Cholinesterases/metabolism , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/physiopathology , Electrocorticography/drug effects , Electrocorticography/methods , Male , Mice , Sarin/administration & dosage
8.
Chemistry ; 26(65): 15035-15044, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-32633095

ABSTRACT

Novel 6-alkyl- and 6-alkenyl-3-fluoro-2-pyridinaldoximes have been synthesised by using a mild and efficient chemoselective hydrogenation of 6-alkynyl-3-fluoro-2-pyridinaldoxime scaffolds, without altering the reducible, unprotected, sensitive oxime functionality and the C-F bond. These novel 6-alkyl-3-fluoro-2-pyridinaldoximes may find medicinal application as antidotes to organophosphate poisoning. Indeed, one low-molecular-weight compound exhibited increased affinity for sarin-inhibited acetylcholinesterase (hAChE) and greater reactivation efficiency or resurrection for sarin-inhibited hAChE, compared with those of 2-pyridinaldoxime (2-PAM) and 1-({[4-(aminocarbonyl)pyridinio]methoxy}methyl)-2-[(hydroxyimino)methyl]pyridinium chloride (HI-6), two pyridinium salts currently used as antidote by several countries. In addition, the uncharged 3-fluorinated bifunctional hybrid showed increased in vitro blood-brain barrier permeability compared with those of 2-PAM, HI-6 and obidoxime. These promising features of novel low-molecular-weight alkylfluoropyridinaldoxime open up a new era for the design, synthesis and discovery of central non-quaternary broad spectrum reactivators for organophosphate-inhibited cholinesterases.


Subject(s)
Blood-Brain Barrier , Acetylcholinesterase/metabolism , Blood-Brain Barrier/metabolism , Cholinesterase Inhibitors , Cholinesterase Reactivators , Humans , Hydrogenation , Oximes , Permeability , Pyridinium Compounds , Sarin
9.
Biomolecules ; 10(6)2020 06 04.
Article in English | MEDLINE | ID: mdl-32512884

ABSTRACT

(1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood-brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Pralidoxime Compounds/pharmacology , Animals , Blood-Brain Barrier/drug effects , Cell Survival/drug effects , Cells, Cultured , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Injections, Intraperitoneal , Male , Mice , Molecular Structure , Pralidoxime Compounds/chemistry , Recombinant Proteins/metabolism
10.
Chem Commun (Camb) ; 55(88): 13243-13246, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31620710

ABSTRACT

A molecularly imprinted polymer containing a porphyrin unit was developed as a biomimetic heterogenous catalyst for the oxidation of sulfur derivatives. Its catalytic efficiency under mild conditions and its easy recovery represent a great asset for the design of new decontamination tools for yperite and VX.

11.
J Med Chem ; 61(17): 7630-7639, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30125110

ABSTRACT

Acetylcholinesterase (AChE), a key enzyme in the central and peripheral nervous systems, is the principal target of organophosphorus nerve agents. Quaternary oximes can regenerate AChE activity by displacing the phosphyl group of the nerve agent from the active site, but they are poorly distributed in the central nervous system. A promising reactivator based on tetrahydroacridine linked to a nonquaternary oxime is also an undesired submicromolar reversible inhibitor of AChE. X-ray structures and molecular docking indicate that structural modification of the tetrahydroacridine might decrease inhibition without affecting reactivation. The chlorinated derivative was synthesized and, in line with the prediction, displayed a 10-fold decrease in inhibition but no significant decrease in reactivation efficiency. X-ray structures with the derivative rationalize this outcome. We thus show that rational design based on structural studies permits the refinement of new-generation pyridine aldoxime reactivators that may be more effective in the treatment of nerve agent intoxication.


Subject(s)
Cholinesterase Reactivators/chemistry , Cholinesterase Reactivators/pharmacology , Nerve Agents/toxicity , Structure-Activity Relationship , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Fish Proteins/chemistry , Fish Proteins/metabolism , Humans , Molecular Docking Simulation , Nerve Agents/chemistry , Obidoxime Chloride/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/toxicity
12.
Chemistry ; 24(38): 9675-9691, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29672968

ABSTRACT

A new series of 3-hydroxy-2-pyridine aldoxime compounds have been designed, synthesised and tested in vitro, in silico, and ex vivo as reactivators of human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibited by organophosphates (OPs), for example, VX, sarin, cyclosarin, tabun, and paraoxon. The reactivation rates of three oximes (16-18) were determined to be greater than that of 2-PAM and comparable to that of HI-6, two pyridinium aldoximes currently used by the armies of several countries. The interactions important for a productive orientation of the oxime group within the OP-inhibited enzyme have been clarified by molecular-modelling studies, and by the resolution of the crystal structure of the complex of oxime 17 with Torpedo californica AChE. Blood-brain barrier penetration was predicted for oximes 15-18 based on their physicochemical properties and an in vitro brain membrane permeation assay. Among the evaluated compounds, two morpholine-3-hydroxypyridine aldoxime conjugates proved to be promising reactivators of OP-inhibited cholinesterases. Moreover, efficient ex vivo reactivation of phosphylated native cholinesterases by selected oximes enabled significant hydrolysis of VX, sarin, paraoxon, and cyclosarin in whole human blood, which indicates that the oximes have scavenging potential.


Subject(s)
Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Organophosphates/chemistry , Oximes/chemistry , Blood-Brain Barrier/chemistry , Butyrylcholinesterase/chemistry , Humans , Structure-Activity Relationship
13.
ACS Appl Mater Interfaces ; 9(39): 34256-34268, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28892358

ABSTRACT

Cobalt particles dispersed on an oxide support form the basis of many important heterogeneous catalysts. Strong interactions between cobalt and the support may lead to irreducible cobalt oxide formation, which is detrimental for the catalytic performance. Therefore, several strategies have been proposed to enhance cobalt reducibility, such as alloying with Pt or utilization of nonoxide supports. In this work, we fabricate bimetallic PtCo supported on graphene-coated ZnO with enhanced cobalt reducibility. By employing a model/planar catalyst formulation, we show that the surface reduction of cobalt oxide is substantially enhanced by the presence of the graphene support as compared to bare ZnO. Stimulated by these findings, we synthesized a realistic powder catalyst consisting of PtCo particles grafted on graphene-coated ZnO support. We found that the addition of graphene coating enhances the surface reducibility of cobalt, fully supporting the results obtained on the model system. Our study demonstrates that realistic catalysts with designed properties can be developed on the basis of insights gained from model catalytic formulation.

14.
Eur J Med Chem ; 78: 455-67, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24704618

ABSTRACT

A series of new uncharged functional acetylcholinesterase (AChE) reactivators including heterodimers of tetrahydroacridine with 3-hydroxy-2-pyridine aldoximes and amidoximes has been synthesized. These novel molecules display in vitro reactivation potencies towards VX-, tabun- and paraoxon-inhibited human AChE that are superior to those of the mono- and bis-pyridinium aldoximes currently used against nerve agent and pesticide poisoning. Furthermore, these uncharged compounds exhibit a broader reactivity spectrum compared to currently approved remediation drugs.


Subject(s)
Acetylcholinesterase/metabolism , Chemical Warfare Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Drug Design , Amides/chemistry , Amides/pharmacology , Chemical Warfare Agents/chemical synthesis , Chemical Warfare Agents/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Oximes/chemistry , Oximes/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Structure-Activity Relationship , Tacrine/chemistry , Tacrine/pharmacology
15.
Chem Commun (Camb) ; 50(30): 3947-50, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24599312

ABSTRACT

Two promising uncharged reactivators for inhibited human BChE and AChE have been described. These compounds show an ability to reactivate VX-inhibited BChE largely superior to those of known pyridinium aldoximes. Moreover, these oximes also exhibit a good ability to reactivate VX-, tabun- and paraoxon-inhibited human AChE.


Subject(s)
Acetylcholinesterase/metabolism , Butyrylcholinesterase/metabolism , Carbolines/pharmacology , Cholinesterase Inhibitors/pharmacology , Oximes/pharmacology , Carbolines/chemical synthesis , Carbolines/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Humans , Molecular Structure , Oximes/chemical synthesis , Oximes/chemistry , Phosphorylation/drug effects , Structure-Activity Relationship
16.
Bioconjug Chem ; 25(2): 202-6, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24410136

ABSTRACT

Exquisite chemoselectivity for cysteine has been found for a novel class of remarkably hydrolytically stable reagents, 3-arylpropiolonitriles (APN). The efficacy of the APN-mediated tagging was benchmarked against other cysteine-selective methodologies in a model study on a series of traceable amino acid derivatives. The selectivity of the methodology was further explored on peptide mixtures obtained by trypsin digestion of lysozyme. Additionally, the superior stability of APN-cysteine conjugates in aqueous media, human plasma, and living cells makes this new thiol-click reaction a promising methodology for applications in bioconjugation.


Subject(s)
Cysteine/chemistry , Nitriles/chemistry , Amino Acid Sequence , Chromatography, Liquid , Humans , Models, Chemical , Molecular Sequence Data , Muramidase/chemistry , Tandem Mass Spectrometry
17.
Bioconjug Chem ; 24(11): 1813-23, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24134734

ABSTRACT

Mannoside glycolipid conjugates are able to inhibit human immunodeficiency virus type 1 (HIV-1) trans-infection mediated by human dendritic cells (DCs). The conjugates are formed by three building blocks: a linear or branched mannose head, a hydrophilic linker, and a 24-carbon lipid chain. We have shown that, even as single molecules, these compounds efficiently target mannose-binding lectins, such as DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) important for HIV-1 transmission. With the goal to optimize their inhibitory activity by supramolecular structure formation, we have compared saturated and unsaturated conjugates, as single molecules, self-assemblies of dynamic micelles, and photopolymerized cross-linked polymers. Surface plasmon resonance showed that, unexpectedly, polymers of trivalent conjugates did not display a higher binding affinity for DC-SIGN than single molecules. Interactions on a chip or in solution were independent of calcium; however, binding to DCs was inhibited by a calcium chelator. Moreover, HIV-1 trans-infection was mostly inhibited by dynamic micelles and not by rigid polymers. The inhibition data revealed a clear correlation between the structure and molecular assembly of a conjugate and its biological antiviral activity. We present an interaction model between DC-SIGN and conjugates-either single molecules, micelles, or polymers-that highlights that the most effective interactions by dynamic micelles involve both mannose heads and lipid chains. Our data reveal that trivalent glycolipid conjugates display the highest microbicide potential for HIV prophylaxis, as dynamic micelles conjugates and not as rigid polymers.


Subject(s)
Anti-HIV Agents/pharmacology , Glycolipids/pharmacology , HIV Infections/drug therapy , HIV Infections/transmission , HIV-1/drug effects , Mannosides/pharmacology , Micelles , Polymers/pharmacology , Anti-HIV Agents/chemistry , Cells, Cultured , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , Dose-Response Relationship, Drug , Glycolipids/chemistry , HIV Infections/immunology , HIV-1/physiology , Humans , Mannosides/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Models, Molecular , Molecular Structure , Polymers/chemistry , Spectrometry, Fluorescence , Structure-Activity Relationship , Surface Plasmon Resonance , Thermodynamics
18.
Nanoscale ; 5(19): 9073-80, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23900422

ABSTRACT

A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His6-TagGN = His6@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His6-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His6-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His6-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.


Subject(s)
Ferrosoferric Oxide/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Histidine/chemistry , Magnetics , Oligopeptides/chemistry , Pyrenes/chemistry , Temperature , Water/chemistry
19.
Chem Biol Interact ; 203(1): 81-4, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23111374

ABSTRACT

Organophosphorus nerve agents (OPNAs) are highly toxic compounds that represent a threat to both military and civilian populations. They cause an irreversible inhibition of acetylcholinesterase (AChE), by the formation of a covalent P-O bond with the catalytic serine. Among the present treatment of nerve agents poisoning, pyridinium and bis-pyridinium aldoximes are used to reactivate this inhibited enzyme but these compounds do not readily cross the blood brain barrier (BBB) due to their permanent cationic charge and thus cannot efficiently reactivate cholinesterases in the central nervous system (CNS). In this study, a series of seven new uncharged oximes reactivators have been synthesized and their in vitro ability to reactivate VX and tabun-inhibited human acetylcholinesterase (hAChE) has been evaluated. The dissociation constant K(D) of inhibited enzyme-oxime complex, the reactivity rate constant kr and the second order reactivation rate constant k(r2) have been determined and have been compared to reference oximes HI-6, Obidoxime and 2-Pralidoxime (2-PAM). Regarding the reactivation of VX-inhibited hAChE, all compounds show a better reactivation potency than those of 2-PAM, nevertheless they are less efficient than obidoxime and HI-6. Moreover, one of seven described compounds presents an ability to reactivate tabun-inhibited hAChE equivalent to those of 2-PAM.


Subject(s)
Acetylcholinesterase/metabolism , Chemical Warfare Agents/toxicity , Cholinesterase Inhibitors/toxicity , Cholinesterase Reactivators/chemical synthesis , Cholinesterase Reactivators/pharmacology , Organophosphorus Compounds/toxicity , Cholinesterase Reactivators/chemistry , Drug Evaluation, Preclinical , Electrochemistry , GPI-Linked Proteins/metabolism , Humans , Molecular Structure , Obidoxime Chloride/pharmacology , Oximes/chemical synthesis , Oximes/chemistry , Oximes/pharmacology , Pralidoxime Compounds/pharmacology , Pyridinium Compounds/pharmacology , Recombinant Proteins/metabolism
20.
J Med Chem ; 55(23): 10791-5, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23148598

ABSTRACT

Pyridinium and bis-pyridinium aldoximes are used as antidotes to reactivate acetylcholinesterase (AChE) inhibited by organophosphorus nerve agents. Herein, we described a series of nine nonquaternary phenyltetrahydroisoquinoline-pyridinaldoxime conjugates more efficient than or as efficient as pyridinium oximes to reactivate VX-, tabun- and ethyl paraoxon-inhibited human AChE. This study explores the structure-activity relationships of this new family of reactivators and shows that 1b-d are uncharged hAChE reactivators with a broad spectrum.


Subject(s)
Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Enzyme Reactivators/pharmacology , Isoquinolines/pharmacology , Oximes/pharmacology , Acetylcholinesterase/drug effects , Humans , Magnetic Resonance Spectroscopy , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...