Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 191(4): 245, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30915584

ABSTRACT

Over the past decades, urbanization in Arabian Gulf region expands in flood-prone areas at an unprecedented rate. Chronic water stress and potential changes in extreme rainfall attributed to climate change therefore pose unique challenges in planning and designing water management infrastructures. The objective of this study is to develop a framework to integrate climate change variations into intensity-duration-frequency (IDF) curves in Oman. A two-stage downscaling-disaggregation method was applied with rainfall at Tawi-Atair station in Dhofar region. Potential variations of extreme rainfall in future were examined by eight scenarios composed with two general circulation models (GCMs), two representative concentration pathways (RCPs), and two future periods (2040-2059 and 2080-2099). A stochastic weather generator model was used to downscale rainfall output from GCM grid scale to local scale. Downscaled daily data were then disaggregated to hourly and 5-min series by using K-nearest neighbor (K-NN) technique. Annual maximum rainfall extracted from eight future scenarios and also from present climate (baseline period) was used to develop rainfall intensity-frequency relationships for eight durations range from 5 min to 24 h. Results of the K-NN analysis indicate that the optimum window size of 57 days and 181 h is suitable for hourly and 5-min disaggregation models, respectively. Results also predict that the effects of climate change on the rainfall intensity will be more significant on storms with shorter durations and higher return periods. Moving towards the end of the twenty-first century, the return period of extreme rainfall events is likely to decrease due to intensified rainfall events.


Subject(s)
Climate Change , Desert Climate , Environmental Monitoring/methods , Models, Theoretical , Floods , Forecasting , Oman , Time Factors
2.
Iran J Public Health ; 44(11): 1473-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26744704

ABSTRACT

BACKGROUND: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). METHODS: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). RESULTS: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 µS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. CONCLUSION: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.

3.
Environ Monit Assess ; 186(5): 2701-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24338053

ABSTRACT

Treated effluents become one of the most significant sources for irrigation and other activities in arid and semi arid countries such as Oman. This study focuses on characterizing the quality of domestic wastewater in chosen three regions: Muscat, Sohar, and Salalah. The knowledge on treatment processes, quality, and proper management of domestic wastewater reuse for various purposes is essential. Wastewater samples were collected from six different sewage treatment plants (STPs) over a period of 1 year in 2009 on a monthly basis. The raw sewage (RS) and treated effluent (TEs) samples were collected from different sampling points in each STP. Both types of samples were analyzed for physicochemical and microbiological assessment. All tests were conducted according to the standard method for the examination of water and wastewater. The results revealed that the TEs electrical conductivity, biological oxygen demand, chemical oxygen demand, heavy metals, sodium, potassium, and total dissolved solids values were found within Omani Standards (OS). The RS in all STPs was categorized as high strength concentration and samples exceeded the acceptable range for ammonia in most of the selected plants except Sohar and Salalah. Nitrate values in RS were also observed in higher concentrations. In general, the produced TEs have met most of regulatory limits stated by OS except for nitrate, Escherichia coli and total suspended solids (TSS). Furthermore, it should be noted that the performance of Salalah and Darsayt STPs can be classified as the best compared to the other four STPs studied in Oman.


Subject(s)
Environmental Monitoring , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Ammonia/analysis , Biological Oxygen Demand Analysis , Metals, Heavy/analysis , Nitrates/analysis , Oman , Sewage/analysis , Sewage/chemistry , Sewage/statistics & numerical data , Wastewater/statistics & numerical data
4.
Iran J Public Health ; 43(2): 168-77, 2014 Feb.
Article in English | MEDLINE | ID: mdl-26060740

ABSTRACT

BACKGROUND: There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. METHODS: Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. RESULTS: Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. CONCLUSION: The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.

SELECTION OF CITATIONS
SEARCH DETAIL
...