Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(20): 7641-7649, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35548860

ABSTRACT

Single-atom catalysts represent an intense topic of research due to their interesting catalytic properties for a wide range of reactions. Clarifying the nature of the active sites of single-atom catalysts under realistic working conditions is of paramount importance for the design of performant materials. We have prepared an Ir single-atom catalyst supported on a nitrogen-rich carbon substrate that has proven to exhibit substantial activity toward the hydrogenation of butadiene with nearly 100% selectivity to butenes even at full conversion. We evidence here, by quantitative operando X-ray absorption spectroscopy, that the initial Ir single atoms are coordinated with four light atoms i.e., Ir-X4 (X = C/N/O) with an oxidation state of +3.2. During pre-treatment under hydrogen flow at 250 °C, the Ir atom loses one neighbour (possibly oxygen) and partially reduces to an oxidation state of around +2.0. We clearly demonstrate that Ir-X3 (X = C/N/O) is an active species with very good stability under reactive conditions. Moreover, Ir single atoms remain isolated under a reducing atmosphere at a temperature as high as 400 °C.

2.
Nat Commun ; 6: 6636, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25818506

ABSTRACT

Carbyne, the sp(1)-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal-insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration.

3.
Nat Commun ; 5: 4109, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24916201

ABSTRACT

The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting.

SELECTION OF CITATIONS
SEARCH DETAIL
...