Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 250: 116064, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38280296

ABSTRACT

pH and temperature are two important characteristics in cells and the environment. These, not only in the well-done regulation of cell functions but also in diagnosis and treatment, have a key role. Protein-protected bimetallic nanoclusters are abundantly used in the building of biosensors. However, insulin-stabilized Au-Ag nanoclusters with dual intrinsic emission have not been investigated yet. In this work, Dual emissive insulin templated Au-Ag nanocluster (Ins(Au/Ag)NCs) were first synthesized in a simple and green one-put manner. The two emission wavelengths of, as-prepared NCs centered at 410 and 630 nm, excited in one excitation wavelength (330 nm). These two emission peaks were assigned to the di-Tyrosine cross-linked formation and bimetallic nanoclusters respectively. Further analysis displayed that each emission band of Ins(Au/Ag)NCs responded to one variable whilst another peak remained constant; For blue and red emission wavelengths, pH dependency and thermo-responsibility were observed respectively. As-prepared nanoprobe with the intrinsic dual emissive feature was used for ratiometric determination of these parameters, each with a discrete response from another. The linear range of 6.0-9.0 for pH and 1 to 71 °C for temperature was obtained, which comprises the physiological range of pH and temperature and afforded intracellular sensing and imaging capability. As-prepared NCs probe show excellent biocompatibility and cell membrane permeability, and so were successfully applied as direct ratiometric pH and temperature probes in HeLa and HFF cells. More interestingly, this dual emissive nanoprobe is capable of distinguishing cancer cells from normal ones.


Subject(s)
Biosensing Techniques , Insulin , Temperature , Hydrogen-Ion Concentration
2.
Talanta ; 257: 124394, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36858016

ABSTRACT

Early detection of breast cancer, the first main cause of death in women, with robust assay platforms using appropriate biomarkers is of great importance for diagnosis and follow-up of the disease progression. This paper introduces an extra selective and sensitive label-free aptasensor for the screening of BRCA1 gene biomarker by taking advantage of a gate modified with aptamer and molecularly imprinted polymer hybrid (MIP) as a new synthetic receptor film coupled with an electrolyte-gated molybdenum disulfide (MoS2) field-effect transistor (FET). The Au gate surface of FET was modified with insulin stabilized bimetallic Ag-Au@nanoclusters (Ag-Au@InsNCs), after which, the immobilization of the hybridized aptamer and o-phenylenediamine was electropolymerized to form an aptamer-MIP hybrid receptor. The output characteristics of Apta-MIP hybrid modified Au gate MoS2 FET device were followed as a result of change in electrical double layer capacitance of electrolye-gate interface. The magnitude of decrease in the drain current showed a linear response over a wide concentration range of 10 aM to 1 nM of BRCA1 ssDNA with a sensitivity as high as 0.4851 µA/decade of concentration and a limit of detection (LOD) of 3.0 aM while very low responses observed for non-imprinted polymer. The devised aptasensor not only was capable to the discrimination of the complementary versus one-base mismatch BRCA1 ssDNA sequence, but also it could detect the complementary BRCA1 ssDNA in spiked human serum samples over a wide concentration range of 10 aM to 1.0 nM with a low LOD of 6.4 aM and a high sensitivity 0.3718 µA/decade.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Female , Humans , BRCA1 Protein , Early Detection of Cancer , Genes, BRCA1 , Insulin , Molecularly Imprinted Polymers , Molybdenum , Aptamers, Peptide/chemistry
3.
J Hazard Mater ; 367: 437-446, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30611036

ABSTRACT

An innovative dual-emissive ratiometric nanohybrid probe comprised of red-emitting a (Ag/Au)@insulin nanoclusters (NCs) and blue-emitting carbon dots (CDs) was designed for sensitive and selective ratiometric determination of Hg2+ and Cu2+ ions.The fluorescence intensity of CDs (λex = 340 nm; λem = 420 nm) was unaffected in the presence of the metal ions tested, whereas the red emitting NCs (λex = 340 nm; λem = 640 nm) was strongly quenched by both Cu2+ and Hg2+ ions. Interestingly, the selectivity of the probe toward these two ions was simply switched by controlling the pH of probe solution without using any chelating agent. The probe selectively responded to Hg2+ ions at acidic condition (pH = 4.0), Cu2+ ions at basic condition (pH = 10.0), and Hg2+-Cu2+ mixtures at pHs within this range. The respective detection limitsfor determination of Cu2+ and Hg2+ ions at their specific pH conditions were estimated as 5 nM and 7 nM, over linear ranges of 20-600 nM and 20-2000 nM, respectively. The fabricated ratiometric probe also showed distinguished fluorescence color changes to visual detection of these ions. Finally, the probe was successfully applied to determination of Hg2+ and Cu2+ ions in tap and mineral water samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...