Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38942005

ABSTRACT

This is an Editorial for the Special Issue on Solitons in Quantum Physics.

2.
Nat Commun ; 14(1): 6734, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872158

ABSTRACT

Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (Tc). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z2 time-reversal symmetry was reported in Ba1-xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z2 time-reversal symmetry is broken ([Formula: see text]). Here, we report on detecting two anomalies in the specific heat of Ba1-xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.

3.
Phys Rev Lett ; 130(22): 226002, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37327449

ABSTRACT

We investigate the magnetic response of nematic superconductors, presenting a new approach to find vortex and skyrmion structures beyond symmetry-constraining Ansätze. Using this approach we show that nematic superconductors form distinctive skyrmion stripes. Our approach lends itself to accurate determination of the field distribution for muon spin rotation probes. We use this to show that the skyrmion structure manifests as a double peak in the field distribution, markedly different from the signal of standard vortex lattices.


Subject(s)
Mesons , Superconductivity
4.
Science ; 380(6651): 1244-1247, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37262195

ABSTRACT

Magnetic field penetrates type-II bulk superconductors by forming quantum vortices that enclose a magnetic flux equal to the magnetic flux quantum. The flux quantum is a universal quantity that depends only on fundamental constants. In this study, we investigated isolated vortices in the hole-overdoped Ba1-xKxFe2As2 (x = 0.77) by using scanning superconducting quantum interference device (SQUID) magnetometry. In many locations, we observed objects that carried only part of a flux quantum, with a magnitude that varied continuously with temperature. We demonstrated mobility and manipulability of these objects and interpreted them as quantum vortices with nonuniversally quantized (fractional) magnetic flux whose magnitude is determined by the temperature-dependent parameters of a multicomponent superconductor.

5.
Phys Rev Lett ; 129(8): 087602, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36053680

ABSTRACT

Recent experiments [Grinenko et al. Nat. Phys. 17, 1254 (2021)NPAHAX1745-247310.1038/s41567-021-01350-9] reported the observation of a condensate of four-fermion composites. This is a resistive state that spontaneously breaks the time-reversal symmetry, leading to unconventional magnetic properties, detected in muon spin rotation experiments and by the appearance of a spontaneous Nernst effect. In this Letter, we derive an effective model for the four-fermion order parameter that describes the observed spontaneous magnetic fields in this state. We show that this model, which is alike to the Faddeev-Skyrme model can host skyrmions: magnetic-flux-carrying topological excitations.

6.
Phys Rev Lett ; 127(10): 100403, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34533359

ABSTRACT

Dissipationless flows in single-component superfluids have a significant degree of universality. In ^{4}He, the dissipationless mass flow occurs with a superfluid velocity determined by the gradient of the superfluid phase. However, in interacting superfluid mixtures, principally new effects appear. In this Letter, we demonstrate a new kind of dissipationless phenomenon arising in mixtures of interacting bosons in optical lattices. We point out that for a particular class of optical lattices, bosons condense in a state where one of the components' superflow results in dissipationless mass flow of the other component, in a direction different from either of the components' superfluid velocities. The free-energy density of these systems contains a vector productlike interaction of superfluid velocities, producing the dissipationless noncollinear entrainment. The effect represents a superfluid counterpart of the Spin Hall effect.

7.
Phys Rev Lett ; 126(17): 179603, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33988401
8.
Phys Rev Lett ; 127(25): 255303, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-35029414

ABSTRACT

We demonstrate microscopically the existence of a new superfluid state of matter in a three-component Bose mixture trapped in an optical lattice. The superfluid transport involving coflow of all three components is arrested in that state, while counterflows between any pair of components are dissipationless. The presence of three components allows for three different types of counterflows with only two independent superfluid degrees of freedom.

9.
Soft Matter ; 17(4): 915-923, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33245086

ABSTRACT

We present a sufficient criterion for the emergence of cluster phases in an ensemble of interacting classical particles with repulsive two-body interactions. Through a zero-temperature analysis in the low density region we determine the relevant characteristics of the interaction potential that make the energy of a two-particle cluster-crystal become smaller than that of a simple triangular lattice in two dimensions. The method leads to a mathematical condition for the emergence of cluster crystals in terms of the sum of Fourier components of a regularized interaction potential, which can be in principle applied to any arbitrary shape of interactions. We apply the formalism to several examples of bounded and unbounded potentials with and without cluster-forming ability. In all cases, the emergence of self-assembled cluster crystals is well captured by the presented analytic criterion and verified with known results from molecular dynamics simulations at vanishingly temperatures. Our work generalises known results for bounded potentials to repulsive potentials of arbitrary shape.

10.
Phys Rev E ; 99(4-1): 042140, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108717

ABSTRACT

Monodisperse ensembles of particles that have cluster crystalline phases at low temperatures can model a number of physical systems, such as vortices in type-1.5 superconductors, colloidal suspensions, and cold atoms. In this work, we study a two-dimensional cluster-forming particle system interacting via an ultrasoft potential. We present a simple mean-field characterization of the cluster-crystal ground state, corroborating with Monte Carlo simulations for a wide range of densities. The efficiency of several Monte Carlo algorithms is compared, and the challenges of thermal equilibrium sampling are identified. We demonstrate that the liquid to cluster-crystal phase transition is of first order and occurs in a single step, and the liquid phase is a cluster liquid.

11.
Phys Rev Lett ; 122(16): 165302, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075028

ABSTRACT

Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) predicted inhomogeneous superconducting and superfluid ground states, spontaneously breaking translation symmetries. In this Letter, we demonstrate that the transition from the FFLO to the normal state as a function of temperature or increased Fermi surface splitting is not a direct one. Instead, the system has an additional phase transition to a different state where pair-density-wave superconductivity (or superfluidity) exists only on the boundaries of the system, while the bulk of the system is normal. The surface pair-density-wave state is very robust and exists for much larger fields and temperatures than the FFLO state.

12.
Phys Rev Lett ; 122(18): 187702, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31144896

ABSTRACT

Spin-orbit interaction (SOI) plays a key role in creating Majorana zero modes in semiconductor nanowires proximity coupled to a superconductor. We track the evolution of the induced superconducting gap in InSb nanowires coupled to a NbTiN superconductor in a large range of magnetic field strengths and orientations. Based on realistic simulations of our devices, we reveal SOI with a strength of 0.15-0.35 eV Å. Our approach identifies the direction of the spin-orbit field, which is strongly affected by the superconductor geometry and electrostatic gates.

13.
Soft Matter ; 15(3): 355-358, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30556570

ABSTRACT

We present a new type of phase-change behavior relevant for information storage applications, that can be observed in 2D systems with cluster-forming ability. The temperature-based control of the ordering in 2D particle systems depends on the existence of a crystal-to-glass transition. We perform molecular dynamics simulations of models with soft interactions, demonstrating that the crystalline and amorphous structures can be easily tuned by heat pulses. The physical mechanism responsible for this behavior is a self-assembled polydispersity, that depends on the cluster-forming ability of the interactions. Therefore, the range of real materials that can perform such a transition is very wide in nature, ranging from colloidal suspensions to vortex matter. The state of the art in soft matter experimental setups, controlling interactions, polydispersity and dimensionality, makes it a very fertile ground for practical applications.

14.
Phys Rev Lett ; 119(16): 167001, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099226

ABSTRACT

We study topological excitations in two-component nematic superconductors, with a particular focus on Cu_{x}Bi_{2}Se_{3} as a candidate material. We find that the lowest-energy topological excitations are coreless vortices: a bound state of two spatially separated half-quantum vortices. These objects are nematic Skyrmions, since they are characterized by an additional topological charge. The inter-Skyrmion forces are dipolar in this model, i.e., attractive for certain relative orientations of the Skyrmions, hence forming multi-Skyrmion bound states.

15.
Phys Rev Lett ; 118(6): 067001, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28234534

ABSTRACT

At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.

16.
J Phys Condens Matter ; 29(3): 035602, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27849628

ABSTRACT

It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

17.
Phys Rev Lett ; 116(9): 097002, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26991194

ABSTRACT

We show that superconductors with broken time-reversal symmetry have very specific magnetic and electric responses to inhomogeneous heating. A local heating of such superconductors induces a magnetic field with a profile that is sensitive to the presence of domain walls and crystalline anisotropy of superconducting states. A nonstationary heating process produces an electric field and a charge imbalance in different bands. These effects can be measured and used to distinguish s+is and s+id superconducting states in the candidate materials such as Ba_{1-x}K_{x}Fe_{2}As_{2}.

18.
Sci Rep ; 5: 17540, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631985

ABSTRACT

Chiral p-wave superconducting state supports a rich spectrum of topological excitations different from those in conventional superconducting states. Besides domain walls separating different chiral states, chiral p-wave state supports both singular and coreless vortices also interpreted as skyrmions. Here, we present a numerical study of the energetic properties of isolated singular and coreless vortex states as functions of anisotropy and magnetic field penetration length. In a given chiral state, single quantum vortices with opposite winding have different energies and thus only one kind is energetically favoured. We find that with the appropriate sign of the phase winding, two-quanta (coreless) vortices are always energetically preferred over two isolated single quanta (singular) vortices. We also report solutions carrying more flux quanta. However those are typically more energetically expensive/metastable as compared to those carrying two flux quanta.

19.
Phys Rev Lett ; 113(5): 055301, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25126924

ABSTRACT

Normally the role of phase fluctuations in superfluids and superconductors is to drive a phase transition to the normal state. This happens due to proliferation of topologically nontrivial phase fluctuations in the form of vortices. Here we discuss a class of systems where, by contrast, nontopological phase fluctuations can produce superfluidity. Here we understand superfluidity as a phenomenon that does not necessarily arises from a broken U(1) symmetry, but can be associated with a certain class of (approximate or exact) degeneracies of the system's energy landscape giving raise to a U(1)-like phase.

20.
Phys Rev Lett ; 112(1): 017003, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483921

ABSTRACT

Arguments were recently advanced that hole-doped Ba(1-x)K(x)Fe2As2 exhibits the s+is state at certain doping. Spontaneous breaking of time-reversal symmetry in the s+is state dictates that it possess domain wall excitations. Here, we discuss what are the experimentally detectable signatures of domain walls in the s+is state. We find that in this state the domain walls can have a dipolelike magnetic signature (in contrast to the uniform magnetic signature of domain walls p+ip superconductors). We propose experiments where quench-induced domain walls can be stabilized by geometric barriers and observed via their magnetic signature or their influence on the magnetization process, thereby providing an experimental tool to confirm the s+is state.

SELECTION OF CITATIONS
SEARCH DETAIL
...