Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Razi Inst ; 75(4): 439-449, 2021 01.
Article in English | MEDLINE | ID: mdl-33403839

ABSTRACT

Tuberculin skin test, also known as the tuberculin or purified protein derivative (PPD) test, is an extensively applied diagnostic test for the detection of primary infection with Mycobacterium tuberculosis (Mtb). The production of PPD is accompanied by some difficulties that require a series of modifications in the production and purification processes. The present study aimed to determine the facilitation level of the manufacturing process by modifying evaluation methods for the production of PPD tuberculin. Mtb strains were cultured in Lowenstein-Jensen media, and the cultured strains were inoculated into the Dorset-Henley liquid medium by the biphasic medium of potato-Dorset-Henley. After incubation, flasks containing cultured strain were selected for bacterial inactivation, and the optimal gamma radiation dose(s) was determined. Tuberculoproteins were precipitated by ammonium sulfate (AS) and Trichloroacetic acid (TCA). Protein concentration was determined using the Bradford and Kjeldahl protein assay methods. Finally, the lymphocyte transformation test and potency test were performed. Based on the results, the Dorset-Henley liquid medium is suitable for the massive growth of the bacterium. The transferal of Mtb from solid to liquid medium was directly carried out without intermediate culture. It was found that during tuberculoprotein production, heating at 100°C for 3 h would be safe for killing mycobacterium. Furthermore, the simultaneous use of heating and gamma irradiation (8 kGgy) killed all of the mycobacteria, while doses of 1, 1.5, and 7 kGy decreased a significant number of bacterial cells. The results also indicated that the concentration of tuberculoprotein extracted by TCA precipitation method was higher than that obtained by AS precipitation. The tuberculoproteins which were produced by these two methods in the lymphocyte transformation test were not significantly different in terms of potency (P>0.05). Moreover, due to the high volume of produced protein, the protein measurement was more efficiently carried out by the Kjeldahl method, compared to the Bradford method. Finally, the results of the present study demonstrated that in addition to the novel approach of gamma irradiation, optimum methods are efficient and applicable in the production of PPD tuberculin.


Subject(s)
Bacterial Proteins/isolation & purification , Diagnostic Tests, Routine/methods , Heating/methods , Mycobacterium tuberculosis/chemistry , Radiation , Tuberculin/isolation & purification , Diagnostic Tests, Routine/instrumentation
2.
Bratisl Lek Listy ; 115(7): 434-8, 2014.
Article in English | MEDLINE | ID: mdl-25077367

ABSTRACT

The venom of Echis carinatus is rich in proteins and peptides effective on the hemostatic system. This venom is contains metalloproteinase which convert prothrombin to meizothrombin. The prothrombin activator which leads to the formation of small blood clots inside the blood vessels throughout the body. To understand the mechanism of the effects of Iranian Echis carinatus venom, the effects of E. carinatus on human and Wistar rat plasma, plasma proteins (prothrombin and fibrinogen) and blood coagulation were studied. Proteolytic activity of the crude venom on blood coagulation factors such as prothrombin, partial thromboplastin and fibrinogen times were studied. In the present study the PT test for human plasma was reduced from 13.4 s (±0.59) to 8.6 s (±0.64) when human plasma was treated with crude venom (concentration of venom was 1 mg/ml) and for rat plasma PT was reduced from 14.5 s (±0.47) to 8 s (±0.49). Some possible biological and biochemical effects of IEc crude venom were investigated. The blood coagulation in human and in rat were investigated in vivo and in-vitro. In this paper, we show that the procoagulant action of Echis carinatus venom is due in part to a protein component that activates prothrombin and the procoagulant activity on human and rat plasma was evaluated (Tab. 2, Fig. 2, Ref. 31).


Subject(s)
Blood Coagulation/drug effects , Endopeptidases/pharmacology , Enzyme Activators/metabolism , Fibrinogen/metabolism , Prothrombin/metabolism , Viper Venoms/pharmacology , Adult , Animals , Fibrinogen/drug effects , Humans , Plasma/drug effects , Plasma/metabolism , Prothrombin/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...