Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171407, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38432366

ABSTRACT

Biochar is a typical soil organic amendment; however, there is limited understanding of its impact on the metabolic characteristics of microorganisms in saline-alkaline soil microenvironment, as well as the advantages and disadvantages of plant-microorganism interactions. To elucidate the mechanisms underlying the impact of saline-alkali stress on cotton, a 6-month pot experiment was conducted, involving the sowing of cotton seedlings in saline-alkali soil. Three different biochar application levels were established: 0 % (C0), 1 % (C1), and 2 % (C2). Results indicated that biochar addition improved the biomass of cotton plants, especially under C2 treatment; the dry weight of cotton bolls were 8.15 times that of C0. Biochar application led to a rise in the accumulation of photosynthetic pigments by 8.30-51.89 % and carbohydrates by 7.4-10.7 times, respectively. Moreover, peroxidase (POD) activity, the content of glutathione (GSH), and ascorbic acid (ASA) were elevated by 23.97 %, 118.39 %, and 48.30 % under C2 treatment, respectively. Biochar caused a reduction in Na+ uptake by 8.21-39.47 %, relative electrical conductivity (REC) of plants, and improved K+/Na+ and Ca2+/Na+ ratio indicating that biochar alleviated salinity-caused growth reduction. Additionally, the application of biochar enhanced the absorption intensity of polysaccharide fingerprints in cotton leaves and roots. Two-factor co-occurrence analysis indicated that the key differential metabolites connected to several metabolic pathways were L-phenylalanine, piperidine, L-tryptophan, and allysine. Interestingly, biochar altered the metabolic characteristics of saline-alkali soil, especially related to the biosynthesis and metabolism of amino acids and purine metabolism. In conclusion, this study demonstrates that biochar may be advantageous in saline soil microenvironment; it has a favorable impact on how plants and soil microbial metabolism interact.


Subject(s)
Alkalies , Soil , Soil/chemistry , Gossypium , Salinity , Charcoal/chemistry , Antioxidants
2.
J Environ Manage ; 352: 120033, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38218168

ABSTRACT

Saline-alkali soil poses significant chanllenges to sustainable development of agriculture. Although biochar is commonly used as a soil organic amendment, its microbial remediation mechanism on saline-alkali soil requires further confirmation. To address this, we conducted a pot experiment using cotton seedlings to explore the potential remediation mechanism of rice straw biochar (BC) at three different levels on saline-alkaline soil. The results showed that adding of 2% biochar greatly improved the quality of saline-alkaline soil by reducing pH levels, electrical conductivity (EC), and water-soluble ions. Moreover, biochar increased the soil organic matter (SOM), nutrient availability and extracellular enzyme activity. Interestingly, it also reduced soil salinity and salt content in various cotton plant tissues. Additionally, biochar had a notable impact on the composition of the microbial community, causing changes in soil metabolic pathways. Notably, the addition of biochar promoted the growth and metabolism of dominant salt-tolerant bacteria, such as Proteobacteria, Bacteroidota, Acidobacteriota, and Actinobacteriota. By enhancing the positive correlation between microorganisms and metabolites, biochar alleviated the inhibitory effect of salt ions on microorganisms. In conclusion, the incorporation of biochar significantly improves the soil microenvironment, reduces soil salinity, and shows promise in ameliorating saline-alkaline soil conditions.


Subject(s)
Alkalies , Microbiota , Soil/chemistry , Charcoal , Ions
3.
J Environ Manage ; 345: 118796, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37579602

ABSTRACT

In arable soils, anthropogenic activities such as fertilizer applications have intensified soil acidification in recent years. This has resulted in frequent environmental problems such as aluminum (Al) and H+ stress, which negatively impact crop yields and quality in acidic soils. Biochar, as a promising soil conditioner, has attracted much attention globally. The present study was conducted in a greenhouse by setting up 2% biochar rate to investigate how biochar relieves Al3+ hazards in acidic soil by affecting soil quality, soil environment, and soil microbiomes. The addition of biochar significantly improved soil fertility and enzyme activities, which were attributed to its ability to enhance the utilization of soil carbon sources by influencing the activity of soil microorganisms. Moreover, the Al3+ contents were significantly decreased by 66.61-88.83% compared to the C0 level (without biochar treatment). In particular, the results of the 27Al NMR suggested that forms of AlVI (Al(OH)2+, Al(OH)+ 2, and Al3+) were increased by 88.69-100.44% on the surface of biochar, reducing the Al3+ stress on soil health. The combination of biochar and nitrogen (N) fertilizer contributed to the augmentation of bacterial diversity. The application of biochar and N fertilizer increased the relative abundance of the majority of bacterial species. Additionally, the application of biochar and N fertilizer had a significant impact on soil microbial metabolism, specifically in the biosynthesis of secondary metabolites (lipids and organic acids) and carbon metabolic ability. In conclusion, biochar can enhance soil microbial activity and improve the overall health of acidic soil by driving microbial metabolism. This study offers both theoretical and technical guidance for enhancing biochar in acidified soil and promoting sustainable development in farmland production.


Subject(s)
Aluminum , Soil , Soil/chemistry , Fertilizers , Charcoal/chemistry , Carbon , Acids , Nitrogen/analysis
4.
Plant Physiol Biochem ; 201: 107858, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37390694

ABSTRACT

Salt stress is considered one of the major abiotic stresses that impair agricultural production, while boron (B) is indispensable for plant cell composition and has also been found to alleviate salt stress. However, the regulatory mechanism of how B improves salt resistance via cell wall modification remains unknown. The present study primarily focused on investigating the mechanisms of B-mediated alleviation of salt stress in terms of osmotic substances, cell wall structure and components and ion homeostasis. The results showed that salt stress hindered plant biomass and root growth in cotton. Moreover, salt stress disrupted the morphology of the root cell wall as evidenced by Transmission Electron Microscope (TEM) analysis. The presence of B effectively alleviated these adverse effects, promoting the accumulation of proline, soluble protein, and soluble sugar, while reducing the content of Na+ and Cl- and augmenting the content of K+ and Ca2+ in the roots. Furthermore, X-ray diffraction (XRD) analysis demonstrated a decline in the crystallinity of roots cellulose. Boron supply also reduced the contents of chelated pectin and alkali-soluble pectin. Fourier-transform infrared spectroscopy (FTIR) analysis further affirmed that exogenous B led to a decline in cellulose accumulation. In conclusion, B offered a promising strategy for mitigating the adverse impact of salt stress and enhancing plant growth by countering osmotic and ionic stresses and modifying root cell wall components. This study may provide invaluable insights into the role of B in ameliorating the effects of salt stress on plants, which could have implications for sustainable agriculture.


Subject(s)
Boron , Salt Stress , Boron/pharmacology , Boron/metabolism , Cell Wall/metabolism , Ions/metabolism , Cellulose/metabolism , Pectins/metabolism , Homeostasis , Plant Roots/metabolism
5.
Sci Total Environ ; 879: 163196, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37004773

ABSTRACT

Nitrogen (N) loss poses a great threat to global environmental sustainability. The application of modified biochar is a novel strategy to improve soil nitrogen retention and alleviate the negative effects caused by N fertilizers. Therefore, in this study iron modified biochar was used as a soil amendment to investigate the potential mechanisms of N retention in Luvisols. The experiment comprised five treatments i.e., CK (control), 0.5 % BC, 1 % BC, 0.5 % FBC and 1 % FBC. Our results showed that the intensity of functional groups and surface structure of FBC was improved. The 1 % FBC treatment showed a significant increment in soil NO3--N, dissolved organic nitrogen (DON), and total nitrogen (TN) content by 374.7 %, 51.9 %, and 14.4 %, respectively, compared with CK. The accumulation of N in cotton shoots and roots was increased by 28.6 % and 6.6 % with 1 % FBC addition. The application of FBC also stimulated the activities of soil enzymes related to C and N cycling i.e., ß-glucosidase (ßG), ß-Cellobiohydrolase (CBH), and Leucine aminopeptidase (LAP). In the soil treated with FBC, a significant improvement in the structure and functions of the soil bacterial community was found. FBC addition altered the taxa involved in the N cycle by affecting soil chemical properties, especially for Achromobacte, Gemmatimonas, and Cyanobacteriales. In addition to direct adsorption, the regulation of FBC on organisms related to N-cycling also played an important role in soil nitrogen retention.


Subject(s)
Charcoal , Nitrogen , Nitrogen/analysis , Adsorption , Charcoal/chemistry , Soil/chemistry , Fertilizers/analysis , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...