Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pharmacol Toxicol ; 21(1): 77, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33198812

ABSTRACT

BACKGROUND: Imatinib is mainly metabolized by CYP3A4 and to a lesser extent by other isoenzymes, with N-desmethyl imatinib being its major equipotent metabolite. Being a CYP3A4 substrate, imatinib co-administration with CYP3A4 modulators would change its pharmacokinetic profile. The cancer chemoprevention potential and anticancer efficacy of many herbal products such as grape seed (GS) and green tea (GT) extracts had led to an increase in their concomitant use with anticancer agents. GS and GT extracts were demonstrated to be potent inhibitors of CYP3A4. The aim of this study is to investigate the effect of standardized GS and/or GT extracts at two different doses on the pharmacokinetics of imatinib and its metabolite, N-desmethyl imatinib, in SD-rats. METHODS: Standardized GS and/or GT extracts were administered orally once daily for 21 days, at low (l) and high (h) doses, 50 and 100 mg/kg, respectively, before the administration of a single intragastric dose of imatinib. Plasma samples were collected and analyzed for imatinib and N-desmethyl imatinib concentrations using LC-MS/MS method, then their non-compartmental pharmacokinetic parameters were determined. RESULTS: h-GS dose significantly decreased imatinib's Cmax and the [Formula: see text] by 61.1 and 72.2%, respectively. Similar effects on N-desmethyl imatinib's exposure were observed as well, in addition to a significant increase in its clearance by 3.7-fold. l-GT caused a significant decrease in imatinib's Cmax and [Formula: see text] by 53.6 and 63.5%, respectively, with more significant effects on N-desmethyl imatinib's exposure, which exhibited a significant decrease by 79.2 and 81.1%, respectively. h-GT showed similar effects as those of l-GT on the kinetics of imatinib and its metabolite. However, when these extracts were co-administered at low doses, no significant effects were shown on the pharmacokinetics of imatinib and its metabolite. Nevertheless, increasing the dose caused a significant decrease in Cmax of N-desmethyl imatinib by 71.5%. CONCLUSIONS: These results demonstrated that the pharmacokinetics of imatinib and N-desmethyl imatinib had been significantly affected by GS and/or GT extracts, which could be partially explained by the inhibition of CYP3A-mediated metabolism. However, the involvement of other kinetic pathways such as other isoenzymes, efflux and uptake transporters could be involved and should be characterized.


Subject(s)
Grape Seed Extract/administration & dosage , Herb-Drug Interactions/physiology , Imatinib Mesylate/pharmacokinetics , Plant Extracts/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Tea , Administration, Oral , Animals , Imatinib Mesylate/administration & dosage , Injections, Intraperitoneal , Male , Protein Kinase Inhibitors/administration & dosage , Rats , Rats, Sprague-Dawley , Vitis
2.
J Exp Pharmacol ; 12: 169-179, 2020.
Article in English | MEDLINE | ID: mdl-32607007

ABSTRACT

INTRODUCTION: Piperine, the bioactive compound of black pepper, and warfarin are metabolized by cytochrome P450 enzymes and are both highly plasma protein-bound compounds. In this study, we evaluated the effect of co-administered piperine on the pharmacokinetics and anticoagulation of warfarin in rats. METHODS: We studied four Sprague-Dawley rat groups: a negative control group receiving only oral warfarin, a test group receiving warfarin plus piperine, a positive control group receiving warfarin plus sulfaphenazole (CYP2C inhibitor), and another positive control group receiving warfarin plus ketoconazole (CYP3A inhibitor). We also analyzed plasma concentrations of warfarin and its major metabolite, 7-hydoxywarfarin. Blood clotting time, calculated as international normalized ratio (INR), was also measured. RESULTS: Our results showed that although co-administration of piperine produced a non-significant decrease in warfarin concentrations, it resulted in significantly lower 7-hydroxywarfarin metabolite concentrations. Piperine significantly decreased, by sixfold, AUC0-∞, by eightfold, Cmax, but significantly increased, by fivefold, CL/F and, by sixfold, Vd/F of 7-hydroxywarfarin. The INR values were consistent with the decrease in warfarin concentration in the presence of piperine and showed a significant decrease at 24 h after warfarin dose. CONCLUSION: We conclude that piperine could be a potent inhibitor of cytochrome P450 metabolism of warfarin in vivo and, contrary to the expectation, may reduce the plasma concentration and anticoagulation of warfarin. This interaction could have a clinical significance and should be investigated in patients.

3.
Acta Pharm ; 70(3): 343-357, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32074068

ABSTRACT

In this study, high-performance liquid chromatography with fluorescence detection (HPLC-FLD) has been used for the first time, for direct determination of warfarin and its major metabolite, 7-hydroxywarfarin, in rat plasma. The simple and sensitive method was developed using Fortis® reversed-phase diphenyl column (150 × 4.6 mm, 3 µm) and a mobile phase composed of phosphate buffer (25 mmol L-1)/methanol/acetonitrile (70:20:10, V/V/V), adjusted to pH 7.4, at a flow rate of 0.8 mL min-1. The diphenyl chemistry of the stationary phase provided a unique selectivity for separating the structurally related aromatic analytes, warfarin and 7-hydroxywarfarin, allowing their successful quantification in the complex plasma matrix. The method was linear over the range 0.01-25 µg mL-1, for warfarin and 7-hydroxywarfarin, and was found to be accurate, precise and selective in accordance with US FDA guidance for bioanalytical method validation. The method was sensitive enough to quantify 0.01 µg mL-1 of warfarin and 7-hydroxywarfarin (LLOQ) using only 100 µL of plasma. The applicability of this method was demonstrated by analyzing samples obtained from rats after oral administration of a single warfarin dose, and studying warfarin and 7-hydroxywarfarin pharmacokinetics.


Subject(s)
Anticoagulants/analysis , Chromatography, High Pressure Liquid/methods , Warfarin/analogs & derivatives , Administration, Oral , Animals , Anticoagulants/pharmacokinetics , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Warfarin/analysis , Warfarin/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...