Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Death Discov ; 9(1): 245, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452056

ABSTRACT

Somatic cell reprogramming and oncogenic transformation share surprisingly similar features, yet transformed cells are resistant to reprogramming. Epigenetic barriers must block transformed cells from reprogramming, but the nature of those barriers is unclear. In this study, we generated a systematic panel of transformed mouse embryonic fibroblasts (MEFs) using oncogenic transgenes and discovered transformed cell lines compatible with reprogramming when transfected with Oct4/Sox2/Klf4/Myc. By comparing the reprogramming-capable and incapable transformed lines we identified multiple stages of failure in the reprogramming process. Some transformed lines failed at an early stage, whilst other lines seemed to progress through a conventional reprogramming process. Finally, we show that MEK inhibition overcomes one critical reprogramming barrier by indirectly suppressing a hyperacetylated active epigenetic state. This study reveals that diverse epigenetic barriers underly resistance to reprogramming of transformed cells.

2.
Front Genet ; 14: 1041103, 2023.
Article in English | MEDLINE | ID: mdl-36923796

ABSTRACT

Grasscutter (Thryonomys swinderianus) is a large-body old world rodent found in sub-Saharan Africa. The body size and the unique taste of the meat of this major crop pest have made it a target of intense hunting and a potential consideration as a micro-livestock. However, there is insufficient knowledge on the genetic diversity of its populations across African Guinean forests. Herein, we investigated the genetic diversity, population structures and evolutionary history of seven Nigerian wild grasscutter populations together with individuals from Cameroon, Republic of Benin, and Ghana, using five mitochondrial fragments, including D-loop and cytochrome b (CYTB). D-loop haplotype diversity ranged from 0.571 (± 0.149) in Republic of Benin to 0.921 (± 0.013) in Ghana. Within Nigeria, the haplotype diversity ranged from 0.659 (± 0.059) in Cross River to 0.837 (± 0.075) in Ondo subpopulation. The fixation index (FST), haplotype frequency distribution and analysis of molecular variance revealed varying levels of population structures across populations. No significant signature of population contraction was detected in the grasscutter populations. Evolutionary analyses of CYTB suggests that South African population might have diverged from other populations about 6.1 (2.6-10.18, 95% CI) MYA. Taken together, this study reveals the population status and evolutionary history of grasscutter populations in the region.

3.
PLoS Biol ; 20(6): e3001682, 2022 06.
Article in English | MEDLINE | ID: mdl-35771762

ABSTRACT

Around 60% of in vitro fertilized (IVF) human embryos irreversibly arrest before compaction between the 3- to 8-cell stage, posing a significant clinical problem. The mechanisms behind this arrest are unclear. Here, we show that the arrested embryos enter a senescent-like state, marked by cell cycle arrest, the down-regulation of ribosomes and histones and down-regulation of MYC and p53 activity. The arrested embryos can be divided into 3 types. Type I embryos fail to complete the maternal-zygotic transition, and Type II/III embryos have low levels of glycolysis and either high (Type II) or low (Type III) levels of oxidative phosphorylation. Treatment with the SIRT agonist resveratrol or nicotinamide riboside (NR) can partially rescue the arrested phenotype, which is accompanied by changes in metabolic activity. Overall, our data suggests metabolic and epigenetic dysfunctions underlie the arrest of human embryos.


Subject(s)
Embryo, Mammalian , Fertilization in Vitro , Embryo, Mammalian/metabolism , Epigenesis, Genetic , Histones/metabolism , Humans , Zygote/metabolism
4.
Front Genet ; 13: 902541, 2022.
Article in English | MEDLINE | ID: mdl-35719395

ABSTRACT

Transposable elements (TEs) are mobile genetic elements that can randomly integrate into other genomic sites. They have successfully replicated and now occupy around 40% of the total DNA sequence in humans. TEs in the genome have a complex relationship with the host cell, being both potentially deleterious and advantageous at the same time. Only a tiny minority of TEs are still capable of transposition, yet their fossilized sequence fragments are thought to be involved in various molecular processes, such as gene transcriptional activity, RNA stability and subcellular localization, and chromosomal architecture. TEs have also been implicated in biological processes, although it is often hard to reveal cause from correlation due to formidable technical issues in analyzing TEs. In this review, we compare and contrast two views of TE activity: one in the pluripotent state, where TEs are broadly beneficial, or at least mechanistically useful, and a second state in human disease, where TEs are uniformly considered harmful.

5.
Cell Rep ; 39(1): 110626, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385732

ABSTRACT

CTCF mediates chromatin insulation and long-distance enhancer-promoter (EP) interactions; however, little is known about how these regulatory functions are partitioned among target genes in key biological processes. Here, we show that Ctcf expression is progressively increased during induced pluripotency. In this process, CTCF first functions as a chromatin insulator responsible for direct silencing of the somatic gene expression program and, interestingly, elevated Ctcf expression next ensures chromatin accessibility and contributes to increased EP interactions for a fraction of pluripotency-associated genes. Therefore, CTCF functions in a context-specific manner to modulate the 3D genome to enable cellular reprogramming. We further discover that these context-specific CTCF functions also enlist SMARCA5, an imitation switch (ISWI) chromatin remodeler, together rewiring the epigenome to facilitate cell-fate switch. These findings reveal the dual functions of CTCF in conjunction with a key chromatin remodeler to drive reprogramming toward pluripotency.


Subject(s)
CCCTC-Binding Factor , Cellular Reprogramming , Chromatin , Enhancer Elements, Genetic , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cellular Reprogramming/genetics , Enhancer Elements, Genetic/genetics , Humans , Mice , Promoter Regions, Genetic
6.
Nucleic Acids Res ; 49(16): 9132-9153, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34390351

ABSTRACT

Transposable elements (TEs) occupy nearly 40% of mammalian genomes and, whilst most are fragmentary and no longer capable of transposition, they can nevertheless contribute to cell function. TEs within genes transcribed by RNA polymerase II can be copied as parts of primary transcripts; however, their full contribution to mature transcript sequences remains unresolved. Here, using long and short read (LR and SR) RNA sequencing data, we show that 26% of coding and 65% of noncoding transcripts in human pluripotent stem cells (hPSCs) contain TE-derived sequences. Different TE families are incorporated into RNAs in unique patterns, with consequences to transcript structure and function. The presence of TE sequences within a transcript is correlated with TE-type specific changes in its subcellular distribution, alterations in steady-state levels and half-life, and differential association with RNA Binding Proteins (RBPs). We identify hPSC-specific incorporation of endogenous retroviruses (ERVs) and LINE:L1 into protein-coding mRNAs, which generate TE sequence-derived peptides. Finally, single cell RNA-seq reveals that hPSCs express ERV-containing transcripts, whilst differentiating subpopulations lack ERVs and express SINE and LINE-containing transcripts. Overall, our comprehensive analysis demonstrates that the incorporation of TE sequences into the RNAs of hPSCs is more widespread and has a greater impact than previously appreciated.


Subject(s)
Endogenous Retroviruses/genetics , Long Interspersed Nucleotide Elements/genetics , Pluripotent Stem Cells/metabolism , Transcriptome , Cell Line , Humans , RNA, Untranslated/genetics , RNA-Binding Proteins/metabolism
7.
Nat Commun ; 12(1): 1456, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674594

ABSTRACT

Transposable elements (TEs) make up a majority of a typical eukaryote's genome, and contribute to cell heterogeneity in unclear ways. Single-cell sequencing technologies are powerful tools to explore cells, however analysis is typically gene-centric and TE expression has not been addressed. Here, we develop a single-cell TE processing pipeline, scTE, and report the expression of TEs in single cells in a range of biological contexts. Specific TE types are expressed in subpopulations of embryonic stem cells and are dynamically regulated during pluripotency reprogramming, differentiation, and embryogenesis. Unexpectedly, TEs are expressed in somatic cells, including human disease-specific TEs that are undetectable in bulk analyses. Finally, we apply scTE to single-cell ATAC-seq data, and demonstrate that scTE can discriminate cell type using chromatin accessibly of TEs alone. Overall, our results classify the dynamic patterns of TEs in single cells and their contributions to cell heterogeneity.


Subject(s)
DNA Transposable Elements/genetics , Genetic Heterogeneity , Single-Cell Analysis/methods , Animals , Chromatin , Embryonic Stem Cells , Gastrulation , Gene Expression Regulation, Developmental , Humans , Mice , Organogenesis/genetics
8.
Methods Mol Biol ; 2198: 451-465, 2021.
Article in English | MEDLINE | ID: mdl-32822050

ABSTRACT

High-throughput sequencing technologies are increasingly used in molecular cell biology to assess genome-wide chromatin dynamics of proteins bound to DNA, through techniques such as chromatin immunoprecipitation sequencing (ChIP-seq). These techniques often rely on an analysis strategy based on identifying genomic regions with increased sequencing signal to infer the binding location or chemical modifications of proteins bound to DNA. Peak calling within individual samples has been well described, however relatively little attention has been devoted to the merging of replicate samples, and the cross-comparison of many samples. Here, we present a generalized strategy to enable the unification of ChIP-seq datasets, enabling enhanced cross-comparison of binding patterns. The strategy works by merging peak data between different (even unrelated) samples, and then using a local background to recalculate enrichment. This strategy redefines the peaks within each experiment, allowing for more accurate cross-comparison of datasets.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Computational Biology/methods , Sequence Analysis, DNA/methods , Algorithms , Animals , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin Immunoprecipitation/methods , DNA/chemistry , DNA/genetics , Genome , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans
9.
Nat Commun ; 11(1): 5061, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033262

ABSTRACT

The interplay between the Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC) and transcriptional/epigenetic co-regulators in somatic cell reprogramming is incompletely understood. Here, we demonstrate that the histone H3 lysine 27 trimethylation (H3K27me3) demethylase JMJD3 plays conflicting roles in mouse reprogramming. On one side, JMJD3 induces the pro-senescence factor Ink4a and degrades the pluripotency regulator PHF20 in a reprogramming factor-independent manner. On the other side, JMJD3 is specifically recruited by KLF4 to reduce H3K27me3 at both enhancers and promoters of epithelial and pluripotency genes. JMJD3 also promotes enhancer-promoter looping through the cohesin loading factor NIPBL and ultimately transcriptional elongation. This competition of forces can be shifted towards improved reprogramming by using early passage fibroblasts or boosting JMJD3's catalytic activity with vitamin C. Our work, thus, establishes a multifaceted role for JMJD3, placing it as a key partner of KLF4 and a scaffold that assists chromatin interactions and activates gene transcription.


Subject(s)
Cellular Reprogramming , Jumonji Domain-Containing Histone Demethylases/metabolism , Kruppel-Like Transcription Factors/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Catalysis , Cell Proliferation , Cellular Senescence , Demethylation , Enhancer Elements, Genetic/genetics , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Genome , Histones/metabolism , Kruppel-Like Factor 4 , Lysine/metabolism , Mice , Models, Biological , Promoter Regions, Genetic , Transcriptional Activation/genetics
10.
Sci Adv ; 6(29): eaba1593, 2020 07.
Article in English | MEDLINE | ID: mdl-32832621

ABSTRACT

Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that ß-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by ß-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts.

11.
Bioinformatics ; 36(5): 1637-1639, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31621827

ABSTRACT

SUMMARY: Cells are generally resistant to cell type conversions, but can be converted by the application of growth factors, chemical inhibitors and ectopic expression of genes. However, it remains difficult to accurately identify the destination cell type or differentiation bias when these techniques are used to alter cell type. Consequently, there is demand for computational techniques that can help researchers understand both the cell type and differentiation bias. While advanced tools identifying cell types exist for single cell data and the deconvolution of mixed cell populations, the problem of exploring partially differentiated cells of indeterminate transcriptional identity has not been addressed. To fill this gap, we developed driver-predictor, which relies on scoring per gene transcriptional similarity between RNA-Seq datasets to reveal directional bias of differentiation. By comparing against large cell type transcriptome libraries or a desired target expression profile, the tool enables the user to visualize both the changes in transcriptional identity as well as the genes accounting for the cell type changes. This software will be a powerful tool for researchers to explore in vitro experiments that involve cell type conversions. AVAILABILITY AND IMPLEMENTATION: Source code is open source under the MIT license and is freely available on https://github.com/LoaloaF/DPre. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Transcriptome , Cell Differentiation , Computational Biology
12.
Comput Struct Biotechnol J ; 17: 628-637, 2019.
Article in English | MEDLINE | ID: mdl-31193391

ABSTRACT

The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.

13.
Nat Commun ; 10(1): 1535, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948729

ABSTRACT

CTCF plays key roles in gene regulation, chromatin insulation, imprinting, X chromosome inactivation and organizing the higher-order chromatin architecture of mammalian genomes. Previous studies have mainly focused on the roles of the canonical CTCF isoform. Here, we explore the functions of an alternatively spliced human CTCF isoform in which exons 3 and 4 are skipped, producing a shorter isoform (CTCF-s). Functionally, we find that CTCF-s competes with the genome binding of canonical CTCF and binds a similar DNA sequence. CTCF-s binding disrupts CTCF/cohesin binding, alters CTCF-mediated chromatin looping and promotes the activation of IFI6 that leads to apoptosis. This effect is caused by an abnormal long-range interaction at the IFI6 enhancer and promoter. Taken together, this study reveals a non-canonical function for CTCF-s that antagonizes the genomic binding of canonical CTCF and cohesin, and that modulates chromatin looping and causes apoptosis by stimulating IFI6 expression.


Subject(s)
Apoptosis , CCCTC-Binding Factor/physiology , Chromatin/metabolism , Alternative Splicing , Binding, Competitive , CCCTC-Binding Factor/chemistry , CCCTC-Binding Factor/metabolism , Chromatin/chemistry , HEK293 Cells , HeLa Cells , Humans , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/physiology
14.
Nat Commun ; 10(1): 34, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604769

ABSTRACT

The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst TEs are increasingly recognized for their important biological functions, they are a potential danger to genomic stability and are carefully regulated by the epigenetic system. However, the full complexity of this regulatory system is not understood. Here, using mouse embryonic stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and are also labelled by all major types of chromatin modification in complex patterns, including bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that significantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility. These effects were context-specific, with different chromatin modifiers regulating the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the complex patterns of epigenetic regulation of TEs.


Subject(s)
Chromatin/metabolism , DNA Transposable Elements/genetics , Epigenesis, Genetic , Histones/metabolism , Animals , Cell Line , Chromatin/genetics , DNA Methylation/genetics , Gene Knockdown Techniques , Histone Code , Histones/genetics , Mice , Mouse Embryonic Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...