Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Curr Pharm Des ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818920

ABSTRACT

Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.

2.
Article in English | MEDLINE | ID: mdl-38708994

ABSTRACT

Atopic dermatitis is acknowledged as a vital inflammatory disorder associated with the integumentary system of the body and is characterized by the formation of thick reddish-grey scars and erythema formation on skin, prevalent amidst the populace. Numerous synthetic drugs are available for treatment like antihistamines, immunosuppressants, glucocorticoids etc., but contrarily, essential oil therapy is exclusively lime lighted to favour the purpose. The utilization of available engineered drugs, possess the marked adverse effects owing to prolonged duration of therapy and therefore, essential oils are explored well and proved to exhibit the anti-eczematic, anti-inflammatory and antipruritic properties. Ethereal distillates own the assorted and selective therapeutic properties attributable to presence of bioactive compounds liable to treat this torturous and integumentary disorder, likely lavender oil, patchouli oil, frankincense oil etc., have been found to exert their pharmacological actions by impeding the liberation and action of inflammatory mediators and immunological hyperactivities that are engaged in exacerbating this idiopathic illness. The current attempt provided the update with the aim to bring forth the naturally originated treatment that is pertinent to provide the invulnerable therapy by circumventing the noxious symptoms i.e. erythema formation and inflamed lesions.

3.
Article in English | MEDLINE | ID: mdl-38305396

ABSTRACT

Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.

4.
Heliyon ; 9(11): e21425, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027672

ABSTRACT

A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.

5.
Plants (Basel) ; 12(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960095

ABSTRACT

Hair loss (alopecia) has a multitude of causes, and the problem is still poorly defined. For curing alopecia, therapies are available in both natural and synthetic forms; however, natural remedies are gaining popularity due to the multiple effects of complex phytoconstituents on the scalp with fewer side effects. Evidence-based hair growth promotion by some plants has been reported for both traditional and advanced treatment approaches. Nanoarchitectonics may have the ability to evolve in the field of hair- and scalp-altering products and treatments, giving new qualities to hair that can be an effective protective layer or a technique to recover lost hair. This review will provide insights into several plant and herbal formulations that have been reported for the prevention of hair loss and stimulation of new hair growth. This review also focuses on the molecular mechanisms of hair growth/loss, several isolated phytoconstituents with hair growth-promoting properties, patents, in vivo evaluation of hair growth-promoting activity, and recent nanoarchitectonic technologies that have been explored for hair growth.

6.
Article in English | MEDLINE | ID: mdl-37403398

ABSTRACT

Ongoing development in cosmetics is increasingly making use of probiotics, which are defined as "live microorganisms with health-enhancing properties mediated through ingestion or topical application to the host". The observation that several bacterial strains augment normal processes of healthy tissue maintenance, particularly for the skin, has opened up new avenues for the use of bacterial strains in cosmetics. A principal feature of such "cosmeceuticals" is an application of increasing insight into the biochemical nature of the skin's normal microbial flora, also called its microbiome. The opportunity of manipulating the skin microbiome to address various skin disorders has revealed novel routes for treatment. The skin microbiome manipulation approaches to address various skin disorders include skin microbiome transplantation, skin bacteriotherapy, and prebiotic stimulation. Research in this field has revealed that medical outcome-targeted manipulation of skin microbiome bacterial strain makeup may significantly increase skin health and appearance. Commercial availability of probiotic skincare products is rapidly expanding worldwide due to satisfactory laboratory results and public perception of probiotics as being intrinsically more wholesome than other bioactive substances, such as synthetics. Major outcomes of probiotic use include a significant reduction in skin wrinkling, acne and other conditions adversely affecting skin appearance and healthy function. Moreover, probiotics may additionally promote normal skin hydration, resulting in a vibrant and lustrous appearance. Nevertheless, significant technical challenges remain for the full optimization of probiotics in cosmetic products. This article summarizes the evolving nature of this field and explores current probiotic research initiatives, along with regulatory aspects and significant challenges in the manufacturing of cosmetics in the context of market expansion for these products.

7.
Future Med Chem ; 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37350114

ABSTRACT

Aim: To design a series of neoteric benzylidene amino-benzimidazole derivatives and to synthesize and evaluate them for anti-inflammatory and antioxidant potential. Methods: The designed target scaffolds were synthesized and appraised for in vitro antioxidant action and in vivo anti-inflammatory potential. AutoDock Vina software was employed for design; the Mannich reaction was used for synthesis; and antioxidant and anti-inflammatory potential were demonstrated by the 2,2-diphenyl-1-picryl hydrazyl free-radical scavenging assay and carrageenan-induced paw edema method, respectively. Results: Methyl-incorporating molecules 3-(2-((2-methylbenzylidene)amino)-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one (6c) and 3-(2-((4-methylbenzylidene)amino-1H-benzo[d]imidazol-1-yl)-1-phenylpropan-1-one (6j) showed remarkable antioxidant and anti-inflammatory action, followed by compounds 6f, 6e and 6i containing 3-CH3, 2-OH, 4-F substituents, respectively. Conclusion: The designed analogs were dynamically confined within the active site of cyclooxygenase-2, and in vitro and in vivo results agreed with molecular docking studies.

8.
Article in English | MEDLINE | ID: mdl-36818227

ABSTRACT

With a 30-fold increase in incidence over the previous 50 years, dengue fever is now the most widespread viral disease transmitted by mosquitoes in the world. The intricate interaction of the human defense system, hereditary predisposition, and specific bitterness elements is more likely to be the pathogenesis of dengue. There are presently no viable treatments for dengue. Synthetic drugs which are used against this ailment also show major side effects. There must be a deeper understanding of the underlying mechanism generating severe symptoms to develop auguring markers, cutting-edge diagnostics, and treatments and finally a well-rounded and secure antiserum. Hence, the aim is to search for safer and more potent drugs derived from plants. Plants or herbs are mainly targeting replication or its enzyme or specific stereotypes, though an exact mechanism of phytoconstituents interfering with the viral replication is still undiscovered. The present attempt provided the update with the objective to bringing up forward pathophysiological eventualities involved in dengue virus along with the naturally derived treatment relevant to provide the impregnable therapy by evading the noxious symptoms for dengue fever. Governor's plum, Cryptocarya chartacea, magnolia berry, and Chinese ginger are such plants exhibiting many effective phytoconstituents against DENV and can be further explored for novel drug discovery by medicinal scientists.

9.
Mini Rev Med Chem ; 23(1): 53-66, 2023.
Article in English | MEDLINE | ID: mdl-35611773

ABSTRACT

Alzheimer's disease or senile dementia is principally acknowledged by the gradual accumulation of neurotoxic amyloid- ß protein in the brain and is considered as the initial event of the phenomenon of this asymptomatic ailment. It prompts the decline in cognitive performance, standard psychiatric functioning, and neuronal transmission across the brain. Significant inferences were withdrawn by utilizing the recently introduced disease-modifying anti- amyloid- ß immunotherapy developed after performing the clinical and preclinical controlled trials to cure the neurodegenerative malady. This strategy is worthwhile because of the clinical relevance and specific targeted approach that exhibited the quenched immunotherapeutic effects and encouraged clinical findings. In vitro fabricated, anti- amyloid- ß recombinant monoclonal antibodies are passively employed to promote clearance and antagonize the aggregation and synthesis of neurotoxic and degenerative aggregates of amyloid-ß. Thus, passive immunotherapy has an adequate impact on treating this disorder, and currently, some other monoclonal pharmacological molecules are under clinical trials to defeat this severe exacerbation with more efficacy and clinical benefits. This review compendiously discusses the anti-amyloid-ß immunotherapy, which will provide a more proficient framework to be employed as a potential therapeutic approach.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Immunotherapy , Brain/metabolism
10.
Biotechnol Genet Eng Rev ; 39(1): 118-142, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35876332

ABSTRACT

Diabetic retinopathy is one of the withering disorders that has been making the lives of patients miserable. Arising as a result of chronic high blood sugar levels in diabetes patients, retinopathy has become a major reason causing permanent blindness, retinal detachment, vitreous humor, rage, or glaucoma among patients. Angiogenesis being the major culprit behind the development of this condition is the growth of new blood vessels from the earlier ones existing. The abnormal growth and poor development of blood vessels also lead to aggravation of the conditions, with vascular endothelial growth factor (VEGF) playing a major role in the process. Various anti-angiogenic therapies or anti-VEGF therapies are being explored for the treatment of this condition. 4 widely explored drugs being-Bevacizumab, pegaptanib sodium, ranibizumab, and aflibercept. The review article tries to summarize studies illustrating the efficacy of these drugs in the treatment of diabetic retinopathy along with some of the herbal therapeutic paradigms displaying anti-angiogenic action that is being used to treat this condition.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/drug therapy , Angiogenesis Inhibitors/therapeutic use , Vascular Endothelial Growth Factor A/therapeutic use , Ranibizumab/therapeutic use , Drug Development , Recombinant Fusion Proteins/therapeutic use , Diabetes Mellitus/drug therapy
11.
Curr Drug Deliv ; 20(6): 708-729, 2023.
Article in English | MEDLINE | ID: mdl-35993477

ABSTRACT

The conventional oral drug delivery systems face a lot of difficulties in the gastrointestinal tract, such as inappropriate drug release and reduction in the efficacy of the doses, which makes this system less susceptible to the delivery of drug formulation. For the enhancement of therapeutic efficacy and bioavailability of the drug, many efforts have been made. The drug candidates which are not stable at alkaline pH and soluble in acidic medium were selected to increase their therapeutic effectiveness through gastro retentive drug delivery systems (GRDDS). This article discusses various factors which alter the gastro retention time (GRT) of the gastro retentive drug delivery system in the stomach and intestine (duodenum). It emphasizes on the novel approaches made for the delivery and release of drugs with the use of magnetic systems, floating (low-density) systems, super porous hydrogels, raft systems, mucoadhesive systems, high-density systems and expandable systems. Along with the applications, the key aspects of in vivo, in vitro & clinical studies in different approaches to GRDDS have been addressed. In addition, future perspectives have been summarized to reduce gastric transit time in fasting and fed conditions.


Subject(s)
Drug Delivery Systems , Gastric Mucosa , Gastric Mucosa/metabolism , Drug Compounding , Drug Liberation , Biological Availability , Delayed-Action Preparations
12.
Mini Rev Med Chem ; 21(12): 1578-1593, 2021.
Article in English | MEDLINE | ID: mdl-33494676

ABSTRACT

The compound 4-hydroxy-3-methoxycinnamic acid, named ferulic acid (FA), is a ubiquitous phenolic compound distributed extensively in the plant kingdom. Ferulic acid is a boon. It has immense potential therapeutic effects in treating diabetes, cancer, pulmonary and CVS diseases majorly due to its antioxidant and anti-inflammatory action. Ferulic acid exhibits a wide variety of biological activities such as, anticarcinogenic, antiallergic, antimicrobial, antiviral, hepatoprotective, metal chelation, activation of transcriptional factors, modulation of enzyme activity, gene expression as well as signal transduction. This active ingredient's structural characteristics make it an optimal substrate to form or synthesise various derivatives and its formulations. The present review addresses structure of ferulic acid, its pharmacodynamic parameters, applications, and its various derivatives. Besides, the review also aims to cover the main aspects related to the use of ferulic acid in the food and health industry and lists various published patents on Ferulic acid.


Subject(s)
Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Food Industry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...