Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 57(70): 8726-8729, 2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34396382

ABSTRACT

SilE and SilB are both proteins involved in the silver efflux pump found in Gram-negative bacteria such as S. typhimurium. Using model peptides along with NMR and CD experiments, we show how SilE may store silver ions prior to delivery and we hypothesize for the first time the interplay between SilB and SilE.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Peptide Fragments/metabolism , Silver/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Carrier Proteins/chemistry , Drug Resistance, Bacterial , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Binding , Salmonella typhimurium/chemistry
2.
Inorg Chem ; 59(1): 62-75, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31117630

ABSTRACT

The binding of lanthanide containers [Ln(ß-diketonate)3dig] [dig = 1-methoxy-2-(2-methoxyethoxy)ethane] to aromatic tridentate N-donor ligands (L) in dichloromethane produces neutral nine-coordinate heteroleptic [LLn(ß-diketonate)3] complexes, the equilibrium reaction quotients of which vary with the total concentrations of the reacting partners. This problematic drift prevents the determination of both reliable thermodynamic stability constants and intrinsic host-guest affinities. The classical solution theory assigns this behavior to changes in the activity coefficients of the various partners in nonideal solutions, and a phenomenological approach attempts to quantitatively attribute this effect to some partition of the solvent molecules between bulk-innocent and contact-noninnocent contributors to the chemical potential. This assumption eventually predicts an empirical linear dependence of the equilibrium reaction quotient on the concentration of the formed [LLn(ß-diketonate)3] complexes, a trend experimentally supported in this contribution for various ligands L differing in lipophilicity and nuclearity and for lanthanide containers grafted with diverse ß-diketonate coligands. Even if the origin of the latter linear dependence is still the subject of debate, this work demonstrates that this approach can be exploited by experimentalists for extracting reliable thermodynamic constants suitable for analyzing and comparing host-guest affinities in organic solvents.

3.
Angew Chem Int Ed Engl ; 59(30): 12331-12336, 2020 07 20.
Article in English | MEDLINE | ID: mdl-31815351

ABSTRACT

Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c-type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105  e s-1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+ /Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.

4.
Chem Sci ; 9(2): 325-335, 2018 Jan 14.
Article in English | MEDLINE | ID: mdl-29629101

ABSTRACT

Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems Lk are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta-) are selected for balancing the charge of the trivalent lanthanide cations, Ln3+, in six-coordinate [Ln(pbta)3] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature (RT = 2.5 kJ mol-1). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

5.
Chemistry ; 24(21): 5423-5433, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29210475

ABSTRACT

Since its identification as an independent topic after the first world war, the chemistry of (bio)polymers and macromolecules rapidly benefited from intense synthetic activities driven by contributors focusing on formulation and structural aspects. Satisfying rationalization and predictions concerning polymer organization, stability, and reactivity were, however, delayed until the late fifties, when physical chemists set the basis of an adapted thermodynamic modeling. The recent emergence of metal-containing (bio)organic polymers (i.e., metallopolymers) thus corresponds to a logical extension of this field with the ultimate goal of combining the rich magnetic and optical properties of open-shell transition metals with the processability and structural variety of polymeric organic scaffolds. Since applications as energy storage materials, drug delivery vectors, shape-memory materials, and photonic devices can be easily envisioned for these materials, the development of metallopolymers is faced with some urgency in producing novel exploitable structures, while the rational control of their formation, organization, and transformation remains elusive. Caught between the sometimes antagonistic requirements of economic efficiency on one side and of scientific pertinence on the other side, the ongoing achievements in the control of the metal loadings of multi-site polymers are highlighted here with some tutorial discussions of luminescent lanthanidopolymers as proof-of-concept.

6.
Chemistry ; 22(24): 8113-23, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27142083

ABSTRACT

The basic concept of allosteric cooperativity used in biology, chemistry and physics states that any change in the intermolecular host-guest interactions operating in multisite receptors can be assigned to intersite interactions. Using lanthanide metals as guests and linear multi-tridentate linear oligomers of variable lengths and geometries as hosts, this work shows that the quantitative modeling of metal loadings requires the consideration of a novel phenomenon originating from solvation processes. It stepwise modulates the intrinsic affinity of each isolated site in multisite receptors, and this without resorting to allosteric cooperativity. An easy-to-handle additive model predicts a negative power law dependence of the intrinsic affinity on the length of the linear metallopolymer. Applied to lanthanidopolymers, the latter common analysis overestimates cooperativity factors by more than two orders of magnitude.

7.
Dalton Trans ; 44(29): 13250-60, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26121559

ABSTRACT

This work demonstrates how the thermodynamic loading of monodisperse polymeric single-stranded multi-tridentate receptors of variable lengths is controlled by the nature of the metallic carrier Ln(hfac)3 (Ln is La, Eu or Y, and hfac is hexafluoroacetylacetonate). Whereas the intrinsic affinity of the tridentate binding site is maximum for medium-sized Eu(3+) and decreases for Y(3+), the contraction of the hydrodynamic radius of the polymer upon metal loading induces positive allosteric cooperativity for the smaller cations. The origin of this behaviour is rationalized within the frame of intermetallic dipole-dipole interactions modulated by the solvation potential of dipolar solutes in dielectric materials. Positive cooperativity produces local high-density of metal ions along the ligand strands (metal clustering) with potential interest in energy migration and sensing processes.

8.
Inorg Chem ; 53(7): 3568-78, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24444086

ABSTRACT

This work illustrates the use of basic statistical mechanics for rationalizing the loading of linear multitridentate polymers with trivalent lanthanides, Ln(III), and identifies the specific ionic sizes of europium and yttrium as promising candidates for the further design of organized heterometallic f­f' materials. Using [Ln(hfac)3] (hfac = hexafluoroacetylacetonate) as lanthanide carriers, the thermodynamically controlled formation of Wolf type-II lanthanidopolymers [{Ln(hfac)3}m(L4)] is modeled with the help of two simple microscopic descriptors: (i) the intrinsic affinity of Ln(III) for the tridentate binding sites fN3(Ln) and (ii) the intermetallic interactions ΔE1­2(Ln,Ln) operating between two occupied adjacent sites. Selective complexation (fN3La << fN3Eu > fN3(Y)) modulated by anticooperative interactions (ΔE1­2(La,La) ≃ ΔE1­2(Eu,Eu) > ΔE1­2(Y,Y) ≈ 0) favors the fixation of Eu(III) in semiorganized lanthanidopolymers [{Eu(hfac)3}m(L4)] displaying exploitable light-downshifting.

9.
Angew Chem Int Ed Engl ; 51(45): 11302-5, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23047755

ABSTRACT

Transfer news: the use of a simple method allows the various sensitization steps in Eu(III) -containing complexes to be deciphered. Incorporation of an increasing number of electron-withdrawing fluorine atoms on the rigid and electronically tunable phenyl spacer between two tridentate binding units (see picture, red O, dark blue N) affects the quantum yield, intersystem crossing, and energy-transfer processes in a rational way.


Subject(s)
Coordination Complexes/chemistry , Europium/chemistry , Hydrocarbons, Fluorinated/chemistry , Ligands , Luminescent Measurements , Molecular Structure , Quantum Theory , Thermodynamics , X-Ray Diffraction
10.
Nat Nanotechnol ; 7(8): 536-43, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22683843

ABSTRACT

Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.


Subject(s)
Cardiovascular System/drug effects , Drug Delivery Systems , Ethanolamines , Nanostructures/chemistry , Phospholipids/chemistry , Arteries/drug effects , Arteries/pathology , Ethanolamines/chemical synthesis , Ethanolamines/chemistry , Ethanolamines/pharmacology , Humans , Lipids/chemistry , Rheology , Stress, Mechanical
11.
Org Lett ; 12(9): 1988-91, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20359170

ABSTRACT

The first asymmetric Cu-catalyzed conjugate addition of dialkylzinc zinc reagents to a large scope of enals in presence of phosphoramidite, SimplePhos, or (R)-BINAP ligands with enantiomeric excesses up to 90% is reported. Moreover, ACA of Grignard reagents afforded moderate to good 1,4-regioselectivities with enantioselectivities up to 90%.

SELECTION OF CITATIONS
SEARCH DETAIL
...