Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 10(12)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34943239

ABSTRACT

Understanding how repeated stress affects metabolic and physiological functions in the long run is of crucial importance for evaluating anthropogenic pressure on the environment. We investigated fertility, longevity and metabolism in D. melanogaster females exposed to short-term heat stress (38 °C, 1 h) repeated daily or weekly. Daily stress was shown to cause a significant decrease in both fertility and longevity, as well as in body mass and triglyceride (fat) content, but a significant increase in trehalose and glucose content. Weekly stress did not affect longevity and carbohydrate metabolism but resulted in a significant decrease in body mass and fat content. Weekly stress did not affect the total level of fertility, despite sharp fertility drops on the exact days of stressing. However, stressing insects weekly, only in the first two weeks after eclosion, caused a significant increase in the total level of fertility. The analysis of differentially expressed genes in the fat bodies and adjacent tissues of researched groups with the use of RNA-Seq profiling revealed changes in signal pathways related to proteolysis/digestion, heat shock protein 23, and in the tightly linked stress-inducible humoral factor Turandot gene network.

3.
Genes (Basel) ; 13(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35052361

ABSTRACT

Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.


Subject(s)
Aggression/physiology , Gene Expression Regulation/genetics , Transcription Factors/genetics , Transcriptome/genetics , Animals , Disease Models, Animal , Gene Expression Profiling/methods , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Inbred C57BL , Phenotype , RNA-Seq/methods
4.
BMC Genet ; 21(Suppl 1): 73, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33092545

ABSTRACT

BACKGROUND: Genome-wide association studies have identified the CDC7-TGFBR3 intergenic region on chromosome 1 to be strongly associated with optic disc area size. The mechanism of its function remained unclear until new data on eQTL markers emerged from the Genotype-Tissue Expression project. The target region was found to contain a strong silencer of the distal (800 kb) Transcription Factor (TF) gene GFI1 (Growth Factor Independent Transcription Repressor 1) specifically in neuroendocrine cells (pituitary gland). GFI1 has also been reported to be involved in the development of sensory neurons and hematopoiesis. Therefore, GFI1, being a developmental gene, is likely to affect optic disc area size by altering the expression of the associated genes via long-range interactions. RESULTS: Distribution of haplotypes in the putative enhancer region has been assessed using the data on four continental supergroups generated by the 1000 Genomes Project. The East Asian (EAS) populations were shown to manifest a highly homogenous unimodal haplotype distribution pattern within the region with the major haplotype occurring with the frequency of 0.9. Another European specific haplotype was observed with the frequency of 0.21. The major haplotype appears to be involved in silencing GFI1repressor gene expression, which might be the cause of increased optic disc area characteristic of the EAS populations. The enhancer/eQTL region overlaps AluJo element, which implies that this particular regulatory element is primate-specific and confined to few tissues. CONCLUSION: Population specific distribution of GFI1 enhancer alleles may predispose certain ethnic groups to glaucoma.


Subject(s)
Enhancer Elements, Genetic , Genetics, Population , Haplotypes , Optic Disk/anatomy & histology , Quantitative Trait Loci , Asian People/genetics , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide , White People/genetics
5.
BMC Med Genomics ; 12(Suppl 2): 46, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30871540

ABSTRACT

BACKGROUND: Fat mass and obesity-associated (FTO) gene has been under close investigation since the discovery of its high impact on the obesity status in 2007 by a range of publications. Recent report on its implication in adipocytes underscored its molecular and functional mechanics in pathology. Still, the population specific features of the locus structure have not been approached in detail. METHODS: We analyzed the population specific haplotype profiles of FTO genomic locus identified by Genome Wide Association Studies (GWAS) for the high obesity risk by examining eighteen 1000G populations from 4 continental groups. The GWAS SNPs cluster is located in the FTO gene intron 1 spanning around 70 kb. RESULTS: We reconstructed the ancestral state of the locus, which comprised low-risk major allele found in all populations, and two minor risk-associated alleles, each one specific for African and European populations, correspondingly. The locus structure and its allele frequency distribution underscore the high risk allele frequency specifically for the European population. South Asian populations have the second highest frequency of risk alleles, while East Asian populations have the lowest. African population-specific minor allele was only partially risk-associated. All of the GWAS SNPs considered are manifested by low risk alleles as reference (major) ones (p > 0.5) in each of the continental groups. Strikingly, rs1421085, recently reported as a causal SNP, was found to be monomorphic in ancestral (African) populations, implying possible selection sweep in the course of its rapid fixation, as reported previously. CONCLUSION: The observations underscore varying FTO -linked risk in the manifestation of population specific epidemiology of genetically bound obesity. The results imply that the FTO locus is one of the major genetic determinants for obesity risk from GWAS SNPs set.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Obesity/pathology , White People/genetics , Alleles , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Haplotypes , Humans , Introns , Obesity/genetics , Polymorphism, Single Nucleotide , Principal Component Analysis , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...