Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Biomedicines ; 11(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36672718

ABSTRACT

Medial vascular calcification (MAC) is characterized by the deposition of hydroxyapatite (HAP) in the medial layer of the vessel wall, leading to disruption of vessel integrity and vascular stiffness. Because currently no direct therapeutic interventions for MAC are available, studying the MAC pathogenesis is of high research interest. Several methods exist to measure and describe the pathophysiological processes in the vessel wall, such as histological staining and gene expression. However, no method describing the physiological properties of the arterial wall is currently available. This study aims to close that gap and validate a method to measure the biomechanical properties of the arterial wall during vascular calcification. Therefore, a stress-stretch curve is monitored using small-vessel-myography upon ex vivo calcification of rat aortic tissue. The measurement of biomechanical properties could help to gain further insights into vessel integrity during calcification progression.

3.
Biomedicines ; 10(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36140372

ABSTRACT

Vessel calcification is characterized by the precipitation of hydroxyapatite (HAP) in the vasculature. Currently, no causal therapy exists to reduce or prevent vessel calcification. Studying the underlying pathways within vascular smooth muscle cells and testing pharmacological intervention is a major challenge in the vascular research field. This study aims to establish a rapid and efficient working protocol for specific HAP detection in cells and tissue using the synthetic bisphosphonate fluorescence dye OsteoSense™. This protocol facilitates especially early quantification of the fluorescence signal and permits co-staining with other markers of interest, enabling smaller experimental set-ups with lesser primary cells consumption and fast workflows. The fluorescence-based detection of vascular calcification with OsteoSense™ combines a high specificity with improved sensitivity. Therefore, this methodology can improve research of the pathogenesis of vascular calcification, especially for testing the therapeutic benefit of inhibitors in the case of in vitro and ex vivo settings.

4.
J Mol Med (Berl) ; 100(9): 1321-1330, 2022 09.
Article in English | MEDLINE | ID: mdl-35916902

ABSTRACT

Calcification and chronic inflammation of the vascular wall is a high-risk factor for cardiovascular mortality, especially in patients with chronic uremia. For the reduction or prevention of rapid disease progression, no specific treatment options are currently available. This study aimed to evaluate an adenine-based uremic mouse model for studying medial vessel calcification and senescence-associated secretory phenotype (SASP) changes of aortic tissue to unravel molecular pathogenesis and provide a model for therapy testing. The dietary adenine administration induced a stable and similar degree of chronic uremia in DBA2/N mice with an increase of uremia blood markers such as blood urea nitrogen, calcium, creatinine, alkaline phosphatase, and parathyroid hormone. Also, renal fibrosis and crystal deposits were detected upon adenine feeding. The uremic condition is related to a moderate to severe medial vessel calcification and subsequent elastin disorganization. In addition, expression of osteogenic markers as Bmp-2 and its transcription factor Sox-9 as well as p21 as senescence marker were increased in uremic mice compared to controls. Pro-inflammatory uremic proteins such as serum amyloid A, interleukin (Il)-1ß, and Il-6 increased. This novel model of chronic uremia provides a simple method for investigation of signaling pathways in vascular inflammation and calcification and therefore offers an experimental basis for the development of potential therapeutic intervention studies.


Subject(s)
Kidney Failure, Chronic , Uremia , Vascular Calcification , Adenine/therapeutic use , Aging , Animals , Disease Models, Animal , Inflammation/complications , Mice , Rats , Rats, Sprague-Dawley , Uremia/metabolism , Uremia/pathology , Vascular Calcification/etiology
5.
Biomedicines ; 9(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806932

ABSTRACT

Medial vascular calcification (mVC) is closely related to cardiovascular disease, especially in patients suffering from chronic kidney disease (CKD). Even after successful kidney transplantation, cardiovascular mortality remains increased. There is evidence that immunosuppressive drugs might influence pathophysiological mechanisms in the vessel wall. Previously, we have shown in vitro that mVC is induced in vascular smooth muscle cells (VSMCs) upon treatment with azathioprine (AZA). This effect was confirmed in the current study in an in vivo rat model treated with AZA for 24 weeks. The calcium content increased in the aortic tissue upon AZA treatment. The pathophysiologic mechanisms involve AZA catabolism to 6-thiouracil via xanthine oxidase (XO) with subsequent induction of oxidative stress. Proinflammatory cytokines, such as interleukin (IL)-1ß and IL-6, increase upon AZA treatment, both systemically and in the aortic tissue. Further, VSMCs show an increased expression of core-binding factor α-1, alkaline phosphatase and osteopontin. As the AZA effect could be decreased in NLRP3-/- aortic rings in an ex vivo experiment, the signaling pathway might be, at least in part, dependent on the NLRP3 inflammasome. Although human studies are necessary to confirm the harmful effects of AZA on vascular stiffening, these results provide further evidence of induction of VSMC calcification under AZA treatment and its effects on vessel structure.

6.
Int J Mol Sci ; 21(10)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423114

ABSTRACT

Vascular calcification and stiffening of the arterial wall is a systemic phenomenon that is associated with aging and it can be increased by several risk factors. The underlying mechanisms, especially the pathways of cellular senescence, are under current investigation. Easily manageable in vitro settings help to study the signaling pathways. The experimental setting presented here is based on an in vitro model using rat vascular smooth muscle cells and the detection of senescence and osteoblastic markers via immunofluorescence and RNAscope™. Co-staining of the senescence marker p21, the osteoblastic marker osteopontin, detection of senescence-associated heterochromatin foci, and senescence-associated ß-galactosidase is possible within one test approach requiring fewer cells. The protocol is a fast and reliable evaluation method for multiplexing of calcifying and senescence markers with fluorescence microscopy detection. The experimental setting enables analysis on single cell basis and allows detection of intra-individual variances of cultured cells.


Subject(s)
Osteopontin/genetics , Vascular Calcification/genetics , beta-Galactosidase/genetics , p21-Activated Kinases/genetics , Aging/genetics , Animals , Arteries/metabolism , Biomarkers/metabolism , Cellular Senescence/genetics , Humans , Microscopy, Fluorescence , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/ultrastructure , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/ultrastructure , Rats , Signal Transduction/genetics , p21-Activated Kinases/metabolism
7.
Int J Mol Sci ; 21(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210002

ABSTRACT

Calcification of the vessel wall contributes to high cardiovascular morbidity and mortality. Vascular calcification (VC) is a systemic disease with multifaceted contributing and inhibiting factors in an actively regulated process. The exact underlying mechanisms are not fully elucidated and reliable treatment options are lacking. Due to the complex pathophysiology, various research models exist evaluating different aspects of VC. This review aims to give an overview of the cell and animal models used so far to study the molecular processes of VC. Here, in vitro cell culture models of different origins, ex vivo settings using aortic tissue and various in vivo disease-induced animal models are summarized. They reflect different aspects and depict the (patho)physiologic mechanisms within the VC process.


Subject(s)
Disease Susceptibility , Models, Biological , Vascular Calcification/etiology , Vascular Calcification/metabolism , Animals , Calcification, Physiologic , Disease Models, Animal , Humans , Vascular Calcification/pathology
8.
J Vasc Res ; 57(1): 46-52, 2020.
Article in English | MEDLINE | ID: mdl-31722349

ABSTRACT

The investigation of vascular calcification and its underlying cellular and molecular pathways is of great interest in current research efforts. Therefore, suitable assays are needed to allow examination of the complex calcification process under controlled conditions. The current study describes a new ex vivo model of isolated-perfused rat aortic tissue with subsequent quantification and vessel staining to analyze the calcium content of the aortic wall. A rat aorta was perfused ex vivo with control and calcification media for 14 days, respectively. The calcification medium was luminally perfused and induced a significant increase in calcium deposition within the media of the vessel wall detected alongside the elastic laminae. Perfusion with control medium induced no calcification. In addition, the mRNA expression of the osteogenic marker bone morphogenetic protein 2 (BMP-2) increased in aortic tissue after perfusion, while SM22α as smooth muscle marker decreased. This newly developed ex vivo model of isolated-perfused rat aorta is suitable for vascular calcification studies testing inducers and inhibitors of vessel calcification and studying signaling pathways within calcification progression.


Subject(s)
Aorta/metabolism , Vascular Calcification/etiology , Animals , Bone Morphogenetic Protein 2/genetics , Calcium/metabolism , Male , Microfilament Proteins/analysis , Muscle Proteins/analysis , Perfusion , Rats , Rats, Wistar , Signal Transduction/physiology
9.
Eur J Clin Invest ; 49(4): e13077, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30721530

ABSTRACT

BACKGROUND: Smoking remains the most important avoidable cause of global mortality. Even though the number of cigarette smokers declines in first world countries, the uses of alternative nicotine delivery products increase and may even surpass the sells of cigarettes. In this light, the explicit role of nicotine in the development of cardiovascular diseases should be elucidated. OBJECTIVES: This narrative review attempts to connect current literature about possible effects of nicotine on the environment of the vasculature to the pathogenesis of vascular calcification, focusing on the tunica media of the vessel wall. METHODS: For this review, papers found on Pubmed and Medline until December 2018 by searching for the keywords nicotine, vascular calcification, oxidative stress, osteoblastic transdifferentiation and matrix degradation were considered. RESULTS: Nicotine creates an environment that probably facilitates and maybe even induces osteogenic transdifferentiation of VSMC by inflammation, endothelial dysfunction and reactive oxygen species. This process is believed to be a key event in calcification of the tunica media of the vessel wall. Furthermore, nicotine could lead to the formation of nucleation sites for hydroxyapatite by facilitating matrix vesicles and extracellular matrix degradation. CONCLUSIONS: There is a growing body of evidence implicating that nicotine alone could impair vascular function and lead to vascular calcification. Further research is necessary to elucidate the explicit influence of nicotine on arteriosclerosis.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine/adverse effects , Nicotinic Agonists/adverse effects , Smoking Cessation Agents/adverse effects , Vascular Calcification/chemically induced , Atherosclerosis/chemically induced , Cell Differentiation/drug effects , Durapatite/metabolism , Endothelium, Vascular/drug effects , Extracellular Matrix/metabolism , Humans , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Reactive Oxygen Species/metabolism , Tunica Media/drug effects , Vasculitis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...