Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(35): 41992-42003, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37611072

ABSTRACT

Dielectric elastomer actuators (DEAs) have been proposed as a promising technology for developing soft robotics and stretchable electronics due to their large actuation. Among available fabrication techniques, inkjet printing is a digital, mask-free, material-saving, and fast technology, making it versatile and appealing for fabricating DEA electrodes. However, there is still a lack of suitable materials for inkjet-printed electrodes. In this study, multiple carbon black (CB) inks were developed and tested as DEA electrodes inkjet-printed on acrylic membranes (VHB). Triethylene glycol monomethyl ether (TGME) and chlorobenzene (CLB) were selected to disperse CB. The inks' stability, particle size, surface tension, viscosity, electrical resistance, and printability were characterized. The DEA with Ink-TGME/CLB (mixture solvent) electrodes obtained 80.63% area strain, a new benchmark for the DEA actuation with CB powder electrodes on VHB. The novelty of this work involves the disclosure of a new ink recipe (TGME/CLB/CB) for inkjet printing that can obtain stable drop formations with a small nozzle (17 × 17 µm), high resolution (∼25 µm, approaching the limit of drop-on-demand inkjet printing), and the largest area strain of DEAs under similar conditions, distinguishing this contribution from the previous works, which is important for the fabrication and miniaturization of DEA-based soft and stretchable electronics.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985884

ABSTRACT

The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool's knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes.

3.
Small ; 16(36): e2002228, 2020 09.
Article in English | MEDLINE | ID: mdl-32743899

ABSTRACT

Identifying nanomaterials (NMs) according to European Union legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission's (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs.

4.
Materials (Basel) ; 12(19)2019 10 04.
Article in English | MEDLINE | ID: mdl-31590255

ABSTRACT

The European Commission's recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities' registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It provides MT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain.

5.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159329

ABSTRACT

Dynamic light scattering (DLS) is commonly used for the determination of average particle diameters and suspension stability and popular in academics and industry. However, DLS is not considered suitable for polydisperse samples. The presence of little quantities of micrometre particles in nano and submicrometre suspensions especially affect the reliability of DLS results. Microfiltration might be a suitable method for the removal of unwanted large particles. This study investigates the effect of microfiltration on the diameter distributions as measured by DLS. Polystyrene standards (40-900 nm diameter), and monomodal silica suspensions were filtered with polytetrafluoroethylene (PTFE) membranes (0.1-1.0 µm pore size) to investigate retention properties and grade efficiency. Non-ideal materials were used to prove the results. Experiments showed that a mono-exponential decay can be achieved by filtration. A size safety factor of at least three between labeled pore size and average diameter was found to keep separation as low as possible. Filtration in order to enhance DLS for particulate submicrometre materials was considered suitable for narrowly distributed coated titania and kaolin powder. In a regulatory context, this might have an impact on considering a substance false positive or false negative according to the European Commission (EC) recommendation of a definition of the term nanomaterial.

6.
Nanoscale Adv ; 1(2): 781-791, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-36132245

ABSTRACT

Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials.

7.
Nanomaterials (Basel) ; 9(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583541

ABSTRACT

Synthetic amorphous silica (SAS) constitute a large group of industrial nanomaterials (NM). Based on their different production processes, SAS can be distinguished as precipitated, fumed, gel and colloidal. The biological activity of SAS, e.g., cytotoxicity or inflammatory potential in the lungs is low but has been shown to depend on the particle size, at least for colloidal silica. Therefore, the preparation of suspensions from highly aggregated or agglomerated SAS powder materials is critical. Here we analyzed the influence of ultrasonic dispersion energy on the biologic activity of SAS using NR8383 alveolar macrophage (AM) assay. Fully characterized SAS (7 precipitated, 3 fumed, 3 gel, and 1 colloidal) were dispersed in H2O by stirring and filtering through a 5 µm filter. Aqueous suspensions were sonicated with low or high ultrasonic dispersion (USD) energy of 18 or 270 kJ/mL, respectively. A dose range of 11.25⁻90 µg/mL was administered to the AM under protein-free conditions to detect particle-cell interactions without the attenuating effect of proteins that typically occur in vivo. The release of lactate dehydrogenase (LDH), glucuronidase (GLU), and tumor necrosis factor α (TNF) were measured after 16 h. Hydrogen peroxide (H2O2) production was assayed after 90 min. The overall pattern of the in vitro response to SAS (12/14) was clearly dose-dependent, except for two SAS which showed very low bioactivity. High USD energy gradually decreased the particle size of precipitated, fumed, and gel SAS whereas the low adverse effect concentrations (LOECs) remained unchanged. Nevertheless, the comparison of dose-response curves revealed slight, but uniform shifts in EC50 values (LDH, and partially GLU) for precipitated SAS (6/7), gel SAS (2/3), and fumed SAS (3/3). Release of TNF changed inconsistently with higher ultrasonic dispersion (USD) energy whereas the induction of H2O2 was diminished in all cases. Electron microscopy and energy dispersive X-ray analysis showed an uptake of SAS into endosomes, lysosomes, endoplasmic reticulum, and different types of phagosomes. The possible effects of different uptake routes are discussed. The study shows that the effect of increased USD energy on the in vitro bioactivity of SAS is surprisingly small. As the in vitro response of AM to different SAS is highly uniform, the production process per se is of minor relevance for toxicity.

8.
Nanomaterials (Basel) ; 8(7)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29933581

ABSTRACT

The granulometric characterization of synthetic amorphous silica (SAS) nanomaterials (NMs) still demands harmonized standard operation procedures. SAS is produced as either precipitated, fumed (pyrogenic), gel and colloidal SAS and these qualities differ, among others, with respect to their state of aggregation and aggregate strength. The reproducible production of suspensions from SAS, e.g., for biological testing purposes, demands a reasonable amount of dispersing energy. Using materials representative for each of the types of SAS, we employed ultrasonic dispersing (USD) at energy densities of 8⁻1440 J/mL and measured resulting particle sizes by dynamic light scattering and laser diffraction. In this energy range, USD had no significant impact on particle size distributions of colloidal and gel SAS, but clearly decreased the particle size of precipitated and fumed SAS. For high energy densities, we observed a considerable contamination of SAS suspensions with metal particles caused by abrasion of the sonotrode’s tip. To avoid this problem, the energy density was limited to 270 J/mL and remaining coarse particles were removed with size-selective filtration. The ultrasonic dispersion of SAS at medium levels of energy density is suggested as a reasonable compromise to produce SAS suspensions for toxicological in vitro testing.

9.
J Nanopart Res ; 18: 171, 2016.
Article in English | MEDLINE | ID: mdl-27441027

ABSTRACT

A new certified reference material for quality control of nanoparticle size analysis methods has been developed and produced by the Institute for Reference Materials and Measurements of the European Commission's Joint Research Centre. The material, ERM-FD102, consists of an aqueous suspension of a mixture of silica nanoparticle populations of distinct particle size and origin. The characterisation relied on an interlaboratory comparison study in which 30 laboratories of demonstrated competence participated with a variety of techniques for particle size analysis. After scrutinising the received datasets, certified and indicative values for different method-defined equivalent diameters that are specific for dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS), scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), particle tracking analysis (PTA) and asymmetrical-flow field-flow fractionation (AF4) were assigned. The value assignment was a particular challenge because metrological concepts were not always interpreted uniformly across all participating laboratories. This paper presents the main elements and results of the ERM-FD102 characterisation study and discusses in particular the key issues of measurand definition and the estimation of measurement uncertainty.

10.
J Nanopart Res ; 18: 158, 2016.
Article in English | MEDLINE | ID: mdl-27375365

ABSTRACT

ABSTRACT: Currently established and projected regulatory frameworks require the classification of materials (whether nano or non-nano) as specified by respective definitions, most of which are based on the size of the constituent particles. This brings up the question if currently available techniques for particle size determination are capable of reliably classifying materials that potentially fall under these definitions. In this study, a wide variety of characterisation techniques, including counting, fractionating, and spectroscopic techniques, has been applied to the same set of materials under harmonised conditions. The selected materials comprised well-defined quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. As a result, each technique could be evaluated with respect to the determination of the number-weighted median size. Recommendations on the most appropriate and efficient use of techniques for different types of material are given.

11.
J Environ Manage ; 157: 230-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25910977

ABSTRACT

Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating.


Subject(s)
Soil Pollutants/chemistry , Titanium/chemistry , Environmental Policy , Humans , Nanostructures/chemistry , Organisation for Economic Co-Operation and Development , Toxicity Tests/standards
12.
Beilstein J Nanotechnol ; 6: 2423-30, 2015.
Article in English | MEDLINE | ID: mdl-26734533

ABSTRACT

The effectiveness of photocatalytic materials increases with the specific surface area, thus nanoscale photocatalyst particles are preferred. However, such nanomaterials are frequently found in an aggregated state, which may reduce the photocatalytic activity due to internal obscuration and the extended diffusion path of the molecules to be treated. This paper investigates the effect of aggregate size on the photocatalytic activity of pyrogenic titania (Aeroxide(®) P25, Evonik), which is widely used in fundamental photocatalysis research. Well-defined and reproducible aggregate sizes were achieved by ultrasonic dispersion. The photocatalytic activity was examined by the color removal of methylene blue (MB) with a laboratory-scale setup based on a plug flow reactor (PFR) and planar UV illumination. The process parameters such as flow regime, optical path length and UV intensity are well-defined and can be varied. Our results firstly show that a complete dispersion of the P25 aggregates is not practical. Secondly, the photocatalytic activity is not further increased beyond a certain degree of dispersion, which probably corresponds to a critical size for which UV irradiation can penetrate the aggregate without significant obscuration.

13.
Ultrasonics ; 44 Suppl 1: e483-90, 2006 Dec 22.
Article in English | MEDLINE | ID: mdl-16808945

ABSTRACT

The theoretical advantages of ultrasonic attenuation spectroscopy for particle size are currently not fully utilized. Especially in the region of larger particles, there is a lack of experimental confirmation of applicable models which may be used to infer particle sizes from measured attenuation spectra. With the present work, an attempt is made to supply experimental data, obtained with a commercially available ultrasonic attenuation spectrometer, and model calculations, which are based on the resonant scattering theory. It is shown that measured attenuation results for various combinations of disperse and continuous phase for both polydisperse emulsions and suspensions are reproducible by calculation. The approach is further examined for suspensions of porous particles. Here, the resonant scattering approach is combined with the Biot model for poroelasticity to obtain attenuation results with several fractions of titania aggregates, differing in particle size and pore diameter. The results indicate that the theory of resonant scattering is a valid approach if applied to particle size characterization in the large particle limit.

14.
J Colloid Interface Sci ; 289(1): 116-24, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16009223

ABSTRACT

Today's theories applied to the inversion of measurement data from optical measurement devices are restricted to single spherical particles. However, particles formed in industrial processes such as precipitation and crystallization are often nonspherical or agglomerates. Theoretical approaches to describe the optical behavior of such particle systems have already been proposed. The verification of these theories has mostly been done using microwave scattering experiments with agglomerates in the millimeter range. This paper provides a first but surely not all-embracing practical test for a general extension of the Mie theory to agglomerates of submicroscale spheres. For the sake of simplicity and from practical viewpoints of online-sensor development only light extinction of an agglomerated suspension has been examined. The required rigid agglomerates have been produced using a spray-drying method that generates particles with a much higher mechanical stability than can be obtained by the usual procedures. Subsequent fractionation of the suspension delivers systems with only a limited number of agglomerate configurations. Extinction measurements at multiple wavelengths using dynamic extinction spectroscopy have been conducted to determine the extinction cross section of the agglomerated dispersions. These data are compared with computations of agglomerates scattering.

SELECTION OF CITATIONS
SEARCH DETAIL
...