Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 May 01.
Article in English | MEDLINE | ID: mdl-35563431

ABSTRACT

There is a need to develop identification tests for Metabolism Disrupting Chemicals (MDCs) with diabetogenic activity. Here we used the human EndoC-ßH1 ß-cell line, the rat ß-cell line INS-1E and dispersed mouse islet cells to assess the effects of endocrine disruptors on cell viability and glucose-stimulated insulin secretion (GSIS). We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM). Bisphenol-A (BPA) and tributyltin (TBT) were used as controls while four other chemicals, namely perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS) and dichlorodiphenyldichloroethylene (DDE), were used as "unknowns". Regarding cell viability, BPA and TBT increased cell death as previously observed. Their mode of action involved the activation of estrogen receptors and PPARγ, respectively. ROS production was a consistent key event in BPA-and TBT-treated cells. None of the other MDCs tested modified viability or ROS production. Concerning GSIS, TBT increased insulin secretion while BPA produced no effects. PFOA decreased GSIS, suggesting that this chemical could be a "new" diabetogenic agent. Our results indicate that the EndoC-ßH1 cell line is a suitable human ß-cell model for testing diabetogenic MDCs. Optimization of the test methods proposed here could be incorporated into a set of protocols for the identification of MDCs.


Subject(s)
Endocrine Disruptors , Insulin-Secreting Cells , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Endocrine Disruptors/metabolism , Endocrine Disruptors/toxicity , Glucose/metabolism , Humans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Rats , Reactive Oxygen Species/metabolism
2.
Environ Int ; 164: 107250, 2022 06.
Article in English | MEDLINE | ID: mdl-35461094

ABSTRACT

17ß-estradiol protects pancreatic ß-cells from apoptosis via the estrogen receptors ERα, ERß and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERß, or in dispersed islet cells from ERß knockout (BERKO) mice. However, the ERα and ERß agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERß form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERß as well as GPER activation by G1 decreased ERαß heterodimers. We propose that ERαß heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαß heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.


Subject(s)
Endocrine Disruptors , Insulin-Secreting Cells , Animals , Apoptosis , Endocrine Disruptors/toxicity , Estradiol , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , GTP-Binding Proteins/metabolism , Mice , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism
3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613676

ABSTRACT

Metabolism-disrupting chemicals (MDCs) are endocrine disruptors with obesogenic and/or diabetogenic action. There is mounting evidence linking exposure to MDCs to increased susceptibility to diabetes. Despite the important role of glucagon in glucose homeostasis, there is little information on the effects of MDCs on α-cells. Furthermore, there are no methods to identify and test MDCs with the potential to alter α-cell viability and function. Here, we used the mouse α-cell line αTC1-9 to evaluate the effects of MDCs on cell viability and glucagon secretion. We tested six chemicals at concentrations within human exposure (from 0.1 pM to 1 µM): bisphenol-A (BPA), tributyltin (TBT), perfluorooctanoic acid (PFOA), triphenylphosphate (TPP), triclosan (TCS), and dichlorodiphenyldichloroethylene (DDE). Using two different approaches, MTT assay and DNA-binding dyes, we observed that BPA and TBT decreased α-cell viability via a mechanism that depends on the activation of estrogen receptors and PPARγ, respectively. These two chemicals induced ROS production, but barely altered the expression of endoplasmic reticulum (ER) stress markers. Although PFOA, TPP, TCS, and DDE did not alter cell viability nor induced ROS generation or ER stress, all four compounds negatively affected glucagon secretion. Our findings suggest that αTC1-9 cells seem to be an appropriate model to test chemicals with metabolism-disrupting activity and that the improvement of the test methods proposed herein could be incorporated into protocols for the screening of diabetogenic MDCs.


Subject(s)
Diabetes Mellitus , Endocrine Disruptors , Animals , Mice , Humans , Glucagon , Reactive Oxygen Species , Receptors, Estrogen/metabolism , Endocrine Disruptors/toxicity , Benzhydryl Compounds/toxicity
4.
Int Rev Cell Mol Biol ; 359: 1-80, 2021.
Article in English | MEDLINE | ID: mdl-33832648

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic ß-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic ß-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in ß-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in ß-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and ß-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/physiopathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Interferon Type I/metabolism , Animals , Autoimmunity , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Epigenesis, Genetic , Humans , Insulin-Secreting Cells/virology , Interferon Type I/genetics , Viruses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...