Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241421

ABSTRACT

The aim of the research was to characterize the soldering alloy type Zn-Mg-Sr and direct the soldering of SiC ceramics with Cu-SiC-based composite. It was investigated whether the proposed composition of the soldering alloy was appropriate for soldering those materials at the defined conditions. For the determination of the solder melting point, TG/DTA analysis was applied. The Zn-Mg system is of the eutectic type with a reaction temperature of 364 °C. The effect of strontium on the phase transformation was minimal, owing to its lower content. The microstructure of the soldering alloy type Zn3Mg1.5Sr is formed of a very fine eutectic matrix containing segregated phases of strontium-SrZn13 and magnesium-MgZn2 and Mg2Zn11. The average tensile strength of the solder is 98.6 MPa. The tensile strength was partially increased by solder alloying with magnesium and strontium. The SiC/solder joint was formed due to the distribution of magnesium from the solder to the boundary with the ceramics at the formation of a phase. Owing to soldering in air, oxidation of the magnesium took place and the oxides formed were combined with the silicon oxides that remained on the surface of the ceramic material-SiC. Thus, a strong bond based on oxygen was obtained. An interaction between the liquid zinc solder and the copper matrix of the composite substrate took place at the formation of a new phase-γCu (Cu5Zn8). The shear strength was measured on several ceramic materials. The average shear strength of the combined SiC/Cu-SiC joint fabricated with Zn3Mg1.5Sr solder was 62 MPa. When soldering similar ceramic materials mutually, a shear strength of as much as around 100 MPa was observed.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770435

ABSTRACT

The present work investigates the influence of isothermal annealing on the microstructure and oxidation behavior of nanocomposite coatings. AlTiSiN/TiSiN coatings with TiSiN adhesive layer were deposited onto a high-speed steel substrate via physical vapor deposition. The coatings were investigated in the as-deposited state as well as after annealing in air at 700, 800, 900 and 1000 °C, respectively. The microstructure and morphology of the coatings were observed using scanning electron microscopy and transmission electron microscopy. The chemical composition and presence of oxidation products were studied by energy-dispersive X-ray spectroscopy. The phase identification was performed by means of X-ray diffraction. In the microstructure of the as-deposited coating, the (Ti1-xAlx)N particles were embedded in an amorphous Si3N4 matrix. TiO2 and SiO2 were found at all annealing temperatures, and Al2O3 was additionally identified at 1000 °C. It was found that, with increasing annealing temperature, the thickness of the oxide layer increased, and its morphology and chemical composition changed. At 700 and 800 °C, a Ti-Si-rich surface oxide layer was formed. At 900 and 1000 °C, an oxidized part of the coating was observed in addition to the surface oxide layer. Compared to the as-deposited sample, the oxidized samples exhibited considerably worse mechanical properties.

3.
Materials (Basel) ; 15(20)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36295278

ABSTRACT

In the present work, the microstructure, phase constitution, and corrosion behavior of binary Sn-xZn alloys (x = 5, 9 and 15 wt.%) were investigated. The alloys were prepared by induction melting of Sn and Zn lumps in argon. After melting, the alloys were solidified to form cast cylinders. The Sn-9Zn alloy had a eutectic microstructure. The Sn-5Zn and Sn-15Zn alloys were composed of dendritic (Sn) or (Zn) and eutectic. The corrosion behavior of the Sn-Zn alloys was studied in aqueous HCl (1 wt.%) and NaCl (3.5 wt.%) solutions at room temperature. Corrosion potentials and corrosion rates in HCl were significantly higher compared to NaCl. The corrosion of the binary Sn-Zn alloys was found to take place by a galvanic mechanism. The chemical composition of the corrosion products formed on the Sn-Zn alloys changed with the Zn weight fraction. Alloys with a higher concentration of Zn (Sn-9Zn, Sn-15Zn) formed corrosion products rich in Zn. The Zn-rich corrosion products were prone to spallation. The corrosion rate in the HCl solution decreased with decreasing weight fraction of Zn. The Sn-5Zn alloy had the lowest corrosion rate. The corrosion resistance in HCl could be considerably improved by reducing the proportion of zinc in Sn-Zn alloys.

4.
Materials (Basel) ; 15(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955233

ABSTRACT

The aim of this research was to study the wettability and solderability of SiC ceramics by the use of an active solder of the type Sn5Sb3Ti in a vacuum by electron beam heating. This solder exerts a narrow melting interval, and only one thermal effect, a peritectic reaction, was observed. The liquidus temperature of the solder is approximately 243 °C. The solder consists of a tin matrix where the Ti6(Sb,Sn)5 and TiSbSn phases are precipitated. The solder wettability on a SiC substrate decreases with decreasing soldering temperature. The best wetting angle of 33° was obtained in a vacuum at the temperature of 950 °C. The bond between the SiC ceramics and the solder was formed due to the interaction of Ti and Ni with silicon contained in the SiC ceramics. The formation of new TiSi2 and Ti3Ni5Si6 phases, which form the reaction layer and thus ensure the bond formation, was observed. The bond with Ni is formed due to the solubility of Ni in the tin solder. Two phases, namely the Ni3Sn2 and Ni3Sn phases, were identified in the transition zone of the Ni/Sn5Sb3Ti joint. The highest shear strength, around 40 MPa, was attained at the soldering temperature of 850 °C.

5.
Materials (Basel) ; 14(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771894

ABSTRACT

The aim of this research was to characterize soldering alloys of the type Sn-Sb-Ti and to study the ultrasonic soldering of SiC ceramics with a metal-ceramic composite of the type Cu-SiC. The Sn5Sb3Ti solder exerts a thermal transformation of a peritectic character with an approximate melting point of 234 °C and a narrow melting interval. The solder microstructure consists of a tin matrix, where the acicular constituents of the Ti6(Sb,Sn)5 phase and the sharp-edged constituents of the TiSbSn phase are precipitated. The tensile strength of the soldering alloy depends on the Ti content and reaches values from 34 to 51 MPa. The average strength of the solder increases with increasing Ti content. The bond with SiC ceramics is formed owing to the interaction of titanium, activated by ultrasound, with SiC ceramics, forming the (Ti,Si)6(Sb,Sn)5 reaction product. The bond with the metal-ceramic composite Cu-SiC is formed owing to the solubility of Cu in a tin solder forming two phases: the wettable η-Cu6Sn5 phase, formed in contact with the solder, and the non-wettable ε-Cu3Sn phase, formed in contact with the copper composite. The average shear strength of the combined joint of SiC/Cu-SiC fabricated using the Sn5Sb3Ti solder was 42.5 MPa. The Sn-Sb-Ti solder is a direct competitor of the S-Bond active solder. The production of solders is cheaper, and the presence of antimony increases their strength. In addition, the application temperature range is wider.

SELECTION OF CITATIONS
SEARCH DETAIL
...