Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14916, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942912

ABSTRACT

The Ediacaran-Cambrian transition documents a critical stage in the diversification of animals. The global fossil record documents the appearance of cloudinomorphs and other shelled tubular organisms followed by non-biomineralized small carbonaceous fossils and by the highly diversified small shelly fossils between ~ 550 and 530 Ma. Here, we report diverse microfossils in thin sections and hand samples from the Ediacaran Bocaina Formation, Brazil, separated into five descriptive categories: elongate solid structures (ES); elongate filled structures (EF); two types of equidimensional structures (EQ 1 and 2) and elongate hollow structures with coiled ends (CE). These specimens, interpreted as diversified candidate metazoans, predate the latest Ediacaran biomineralized index macrofossils of the Cloudina-Corumbella-Namacalathus biozone in the overlying Tamengo Formation. Our new carbonate U-Pb ages for the Bocaina Formation, position this novel fossil record at 571 ± 9 Ma (weighted mean age). Thus, our data point to diversification of metazoans, including biomineralized specimens reminiscent of sections of cloudinids, protoconodonts, anabaritids, and hyolithids, in addition to organo-phosphatic surficial coverings of animals, demonstrably earlier than the record of the earliest known skeletonized metazoan fossils.


Subject(s)
Fossils , Animals , Brazil , Animal Shells/anatomy & histology , Animal Shells/chemistry , Biological Evolution , Paleontology/methods
2.
Mar Pollut Bull ; 204: 116534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850759

ABSTRACT

Marinas are central hubs of global maritime leisure and transport, yet their operations can deteriorate the environmental quality of sediments. In response, this study investigated the metal contamination history associated with antifouling paint uses in a sediment core collected from Bracuhy marina (Southeast Brazil). Analysis target major and trace elements (Cu, Zn, Pb, Cd and Sn), rare earth elements (REEs), and Pb isotopes. The modification in Pb isotopic ratios and REEs pattern unequivocally revealed sediment provenance disruption following the marina construction. Metal distribution in the sediment core demonstrates that concentrations of Cu and Zn increased by up to 15 and 5 times, respectively, compared to the local background. This severe Cu and Zn contamination coincides with the onset of marina operations and can be attributed to the use of antifouling paints.


Subject(s)
Copper , Environmental Monitoring , Geologic Sediments , Paint , Water Pollutants, Chemical , Geologic Sediments/chemistry , Paint/analysis , Water Pollutants, Chemical/analysis , Copper/analysis , Brazil , Ships
3.
PNAS Nexus ; 2(3): pgad025, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909825

ABSTRACT

The availability of nutrients in seawater, such as dissolved phosphorus (P), is thought to have regulated the evolution and activity of microbial life in Earth's early oceans. Marine concentrations of bioavailable phosphorus spanning the Archean Eon remain a topic of debate, with variable estimates indicating either low (0.04 to 0.13 µM P) or high (10 to 100 µM P) dissolved P in seawater. The large uncertainty on these estimates reflects in part a lack of clear proxy signals recorded in sedimentary rocks. Contrary to some recent views, we show here that iron formations (IFs) are reliable recorders of past phosphorus concentrations and preserved a primary seawater signature. Using measured P and iron (Fe) contents in Neoarchean IF from Carajás (Brazil), we demonstrate for the first time a clear partitioning coefficient relationship in the P-Fe systematics of this IF, which, in combination with experimental and Archean literature data, permits us to constrain Archean seawater to a mean value of 0.063 ± 0.05 µM dissolved phosphorus. Our data set suggests that low-phosphorus conditions prevailed throughout the first half of Earth's history, likely as the result of limited continental emergence and marine P removal by iron oxyhydroxide precipitation, supporting prior suggestions that changes in ancient marine P availability at the end of the Archean modulated marine productivity, and ultimately, the redox state of Earth's early oceans and atmosphere. Classification: Physical Sciences, Earth, Atmospheric and Planetary Sciences.

4.
Geobiology ; 19(4): 326-341, 2021 07.
Article in English | MEDLINE | ID: mdl-33660904

ABSTRACT

Microbial activity is often invoked as a direct or indirect contributor to the precipitation of ancient chemical sedimentary rocks such as Precambrian iron formations (IFs). Determining a specific metabolic pathway from the geological record remains a challenge, however, due to a lack of constraints on the initial conditions and microbially induced redox reactions involved in the formation of iron oxides. Thus, there is ongoing debate concerning the role of photoferrotrophy, that is the process by which inorganic carbon is fixed into organic matter using light as an energy source and Fe(II) as an electron donor, in the deposition of IFs. Here, we examine ~2.74-Ga-old Neoarchean IFs and associated carbonates from the Carajás Mineral Province, Brazil, to reconstruct redox conditions and to infer the oxidizing mechanism that allowed one of the world's largest iron deposits to form. The absence of cerium (Ce) anomalies reveals that conditions were pervasively anoxic during IF deposition, while unprecedented europium (Eu) anomalies imply that Fe was supplied by intense hydrothermal activity. A positive and homogeneous Fe isotopic signal in space and time in these IFs indicates a low degree of partial oxidation of Fe(II), which, combined with the presence of 13 C-depleted organic matter, points to a photoautotrophic metabolic driver. Collectively, our results argue in favor of reducing conditions during IF deposition and suggest anoxygenic photosynthesis as the most plausible mechanism responsible for Fe oxidation in the Carajás Basin.


Subject(s)
Iron , Photosynthesis , Brazil , Carbonates , Oxidation-Reduction
5.
Environ Pollut ; 226: 41-47, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28402837

ABSTRACT

The application of zinc (Zn) isotopes in bivalve tissues to identify zinc sources in estuaries was critically assessed. We determined the zinc isotope composition of mollusks (Crassostrea brasiliana and Perna perna) and suspended particulate matter (SPM) in a tropical estuary (Sepetiba Bay, Brazil) historically impacted by metallurgical activities. The zinc isotope systematics of the SPM was in line with mixing of zinc derived from fluvial material and from metallurgical activities. In contrast, source mixing alone cannot account for the isotope ratios observed in the bivalves, which are significantly lighter in the contaminated metallurgical zone (δ66ZnJMC = +0.49 ± 0.06‰, 2σ, n = 3) compared to sampling locations outside (δ66ZnJMC = +0.83 ± 0.10‰, 2σ, n = 22). This observation suggests that additional factors such as speciation, bioavailability and bioaccumulation pathways (via solution or particulate matter) influence the zinc isotope composition of bivalves.


Subject(s)
Bivalvia/metabolism , Environmental Monitoring/methods , Estuaries , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Zinc/analysis , Zinc/metabolism , Animals , Brazil , Environmental Pollution , Isotopes/metabolism , Metallurgy , Particulate Matter/metabolism
6.
Anal Chem ; 80(24): 9776-80, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-19072275

ABSTRACT

We developed an analytical method and constrained procedural boundary conditions that enable accurate and precise Zn isotope ratio measurements in urban aerosols. We also demonstrate the potential of this new isotope system for air pollutant source tracing. The procedural blank is around 5 ng and significantly lower than published methods due to a tailored ion chromatographic separation. Accurate mass bias correction using external correction with Cu is limited to Zn sample content of approximately 50 ng due to the combined effect of blank contribution of Cu and Zn from the ion exchange procedure and the need to maintain a Cu/Zn ratio of approximately 1. Mass bias is corrected for by applying the common analyte internal standardization method approach. Comparison with other mass bias correction methods demonstrates the accuracy of the method. The average precision of delta(66)Zn determinations in aerosols is around 0.05 per thousand per atomic mass unit. The method was tested on aerosols collected in Sao Paulo City, Brazil. The measurements reveal significant variations in delta(66)Zn(Imperial) ranging between -0.96 and -0.37 per thousand in coarse and between -1.04 and 0.02 per thousand in fine particular matter. This variability suggests that Zn isotopic compositions distinguish atmospheric sources. The isotopic light signature suggests traffic as the main source. We present further delta(66)Zn(Imperial) data for the standard reference material NIST SRM 2783 (delta(66)Zn(Imperial) = 0.26 +/- 0.10 per thousand).

SELECTION OF CITATIONS
SEARCH DETAIL
...