Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(4)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37110455

ABSTRACT

The demand for probiotic bacteria-fermented food products is increasing; however, the monitoring of the fermentation process is still challenging when using conventional approaches. A classical approach requires a large amount of offline data to calibrate a chemometric model using fluorescence spectra. Fluorescence spectra provide a wide range of online information during the process of cultivation, but they require a large amount of offline data (which involves laborious work) for the calibration procedure when using a classical approach. In this study, an alternative model-based calibration approach was used to predict biomass (the growth of Lactiplantibacillus plantarum A6 (LPA6) and Lacticaseibacillus rhamnosus GG (LCGG)), glucose, and lactic acid during the fermentation process of a teff-based substrate inoculated with mixed strains of LPA6 and LCGG. A classical approach was also applied and compared to the model-based calibration approach. In the model-based calibration approach, two-dimensional (2D) fluorescence spectra and offline substituted simulated data were used to generate a chemometric model. The optimum microbial specific growth rate and chemometric model parameters were obtained simultaneously using a particle swarm optimization algorithm. The prediction errors for biomass, glucose, and lactic acid concentrations were measured between 6.1 and 10.5%; the minimum error value was related to the prediction of biomass and the maximum one was related to the prediction of glucose using the model-based calibration approach. The model-based calibration approach and the classical approach showed similar results. In conclusion, the findings showed that a model-based calibration approach could be used to monitor the process state variables (i.e., biomass, glucose, and lactic acid) online in the fermentation process of a teff-based substrate inoculated with mixed strains of LPA6 and LCGG. However, glucose prediction showed a high error value.

2.
Sci Rep ; 13(1): 235, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604451

ABSTRACT

Makespan dominates the manufacturing expenses in bakery production. The high energy consumption of ovens also has a substantial impact, which bakers may overlook. Bakers leave ovens running until the final product is baked, allowing them to consume energy even when not in use. It results in energy waste, increased manufacturing costs, and CO2 emissions. This paper investigates three manufacturing lines from small and medium-sized bakeries to find optimum makespan and ovens' idle time (OIDT). A hybrid no-wait flow shop scheduling model considering the constraints that are most common in bakeries is proposed. To find optimal solutions, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm (SPEA2), generalized differential evolution (GDE3), improved multi-objective particle swarm optimization (OMOPSO), and speed-constrained multi-objective particle swarm optimization (SMPSO) were used. The experimental results show that the shortest makespan does not always imply the lowest OIDT. Even the optimized solutions have up to 231 min of excess OIDT, while the makespan is the shortest. Pareto solutions provide promising trade-offs between makespan and OIDT, with the best-case scenario reducing OIDT by 1348 min while increasing makespan only by 61 min from the minimum possible makespan. NSGA-II outperforms all other algorithms in obtaining a high number of good-quality solutions and a small number of poor-quality solutions, followed by SPEA2 and GDE3. In contrast, OMOPSO and SMPSO deliver the worst solutions, which become pronounced as the problem complexity grows.


Subject(s)
Algorithms , Commerce
SELECTION OF CITATIONS
SEARCH DETAIL
...