Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 155(4): 1021-9, 2008 Sep 09.
Article in English | MEDLINE | ID: mdl-18674597

ABSTRACT

Catechol-O-methyltransferase is an important enzyme in the metabolism of dopamine and an important regulator of aspects of dopamine-dependent working memory in prefrontal cortex that are disturbed in schizophrenia. This study investigated the phenotype of mice with heterozygous deletion vs. homozygous knockout of the catechol-O-methyltransferase gene across paradigms that access processes relevant for psychotic illness. Homozygotes evidenced improved performance in spontaneous alternation, an index of immediate spatial working memory; this effect appeared more substantive in males and was reflected in performance in aspects of the Barnes maze, an index of spatial learning/memory. Heterozygotes evidenced impaired performance in object recognition, an index of recognition memory; this effect was evident for both sexes at a retention interval of 5 min but appeared more enduring in males. There were no material effects for either genotype in relation to sociability or social novelty preference. While homozygous catechol-O-methyltransferase deletion results in improvement in spatial learning/working memory with little effect on social behavior, heterozygous deletion results in impairment of recognition memory. We have reported recently, using similar methods, that mice with deletion of the schizophrenia risk gene neuregulin-1 evidence disruption to social behavior, with little effect on spatial learning/working memory. The data suggest that catechol-O-methyltransferase and neuregulin-1 may influence, respectively, primarily cognitive and social endophenotypes of the overall schizophrenia syndrome.


Subject(s)
Catechol O-Methyltransferase/deficiency , Cognition/physiology , Heterozygote , Homozygote , Phenotype , Social Behavior , Analysis of Variance , Animals , Behavior, Animal/physiology , Exploratory Behavior/physiology , Female , Male , Maze Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/genetics , Neuropsychological Tests , Sex Factors
2.
Neuroscience ; 147(1): 18-27, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17512671

ABSTRACT

Neuregulin-1 (NRG1) has been identified as a candidate susceptibility gene for schizophrenia. In the present study the functional role of the NRG1 gene, as it relates to cognitive and social processes known to be disrupted in schizophrenia, was assessed in mice with heterozygous deletion of transmembrane (TM)-domain NRG1 in comparison with wildtypes (WT). Social affiliative behavior was assessed using the sociability and preference for social novelty paradigm, in terms of time spent in: (i) a chamber containing an unfamiliar conspecific vs. an empty chamber (sociability), or (ii) a chamber containing an unfamiliar conspecific vs. a chamber containing a familiar conspecific (preference for social novelty). Social dominance and aggressive behavior were examined in the resident-intruder paradigm. Spatial learning and memory were assessed using the Barnes maze paradigm, while spatial working memory was measured using the continuous variant of the spontaneous alternation task. Barnes maze data revealed intact spatial learning in NRG1 mutants, with elevated baseline latency to enter the escape hole in male NRG1 mutants reflecting an increase in activity level. Similarly, although a greater number of overall arm entries were found, spontaneous alternation was unaffected in NRG1 mice. Social affiliation data revealed NRG1 mutants to evidence a specific loss of WT preference for spending time with an unfamiliar as opposed to a familiar conspecific. This suggests that NRG1 mutants show a selective impairment in response to social novelty. While spatial learning and working memory processes appear intact, heterozygous deletion of TM-domain NRG1 was associated with disruption to social novelty behavior. These data inform at a novel phenotypic level on the functional role of this gene in the context of its association with risk for schizophrenia.


Subject(s)
Exploratory Behavior/physiology , Maze Learning/physiology , Memory, Short-Term/physiology , Neuregulin-1/physiology , Schizophrenia/genetics , Social Behavior , Aggression/physiology , Analysis of Variance , Animals , Disease Models, Animal , Female , Gene Deletion , Heterozygote , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuregulin-1/genetics , Reaction Time/physiology , Risk Factors , Smell/genetics , Smell/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...