Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Colloids Surf B Biointerfaces ; 185: 110591, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31704606

ABSTRACT

Aluminium doped phosphate based bioglasses have potential applications in the field of bone tissue engineering, because of their excellent bioactivity and biocompatibility along with high mechanical strength and controlled dissolution. In the present study, 8ZnO-22Na2O-(24-x)CaO-46P2O5-xAl2O3 (where x = 0, 2, 4, 6, 8 and 10 mol%) glass system was synthesized and investigated by means of XRD, FTIR, SEM and EDS before and after immersion in SBF for 3, 7, 14 and 21days, the physic-chemical properties of the samples, including density and microhardness, evaluation of pH and weight loss of glasses in physiological fluid and cell cultural studies like cell viability, cytocompatability and cell proliferation by seeding rMSCs cells on the glass samples in order to throw some light on their structural properties. The results showed that, the density and Vickers hardness found to be increased with the increase in content of alumina due to the slight increase in the number of octahedrally coordinated Al3+ ions and stronger ionic cross linkages due to insertion of Al3+ ions between phosphate networks. The initial rise in pH and controlled solubility in SBF strongly supports the apatite layer development. The growth of the rMSCs cells on all samples showing good cytocompatability and proliferation up to 6 mol% Al2O3 after that decreases slightly with an increase in alumina content due to network forming action of Al3+ ions in zinc phosphate based glasses. The results confirmed the suitability of these glasses for clinical trials towards bone repair and regeneration resorbable implants.


Subject(s)
Aluminum Oxide/chemistry , Biocompatible Materials/pharmacology , Bone and Bones/cytology , Ceramics/chemistry , Materials Testing , Mesenchymal Stem Cells/cytology , Phosphates/chemistry , Zinc Compounds/chemistry , Animals , Biocompatible Materials/chemistry , Bone and Bones/drug effects , Cell Survival , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Rats , Tissue Engineering
4.
FEMS Microbiol Rev ; 29(2): 231-62, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15808743

ABSTRACT

The helix-turn-helix (HTH) domain is a common denominator in basal and specific transcription factors from the three super-kingdoms of life. At its core, the domain comprises of an open tri-helical bundle, which typically binds DNA with the 3rd helix. Drawing on the wealth of data that has accumulated over two decades since the discovery of the domain, we present an overview of the natural history of the HTH domain from the viewpoint of structural analysis and comparative genomics. In structural terms, the HTH domains have developed several elaborations on the basic 3-helical core, such as the tetra-helical bundle, the winged-helix and the ribbon-helix-helix type configurations. In functional terms, the HTH domains are present in the most prevalent transcription factors of all prokaryotic genomes and some eukaryotic genomes. They have been recruited to a wide range of functions beyond transcription regulation, which include DNA repair and replication, RNA metabolism and protein-protein interactions in diverse signaling contexts. Beyond their basic role in mediating macromolecular interactions, the HTH domains have also been incorporated into the catalytic domains of diverse enzymes. We discuss the general domain architectural themes that have arisen amongst the HTH domains as a result of their recruitment to these diverse functions. We present a natural classification, higher-order relationships and phyletic pattern analysis of all the major families of HTH domains. This reconstruction suggests that there were at least 6-11 different HTH domains in the last universal common ancestor of all life forms, which covered much of the structural diversity and part of the functional versatility of the extant representatives of this domain. In prokaryotes the total number of HTH domains per genome shows a strong power-equation type scaling with the gene number per genome. However, the HTH domains in two-component signaling pathways show a linear scaling with gene number, in contrast to the non-linear scaling of HTH domains in single-component systems and sigma factors. These observations point to distinct evolutionary forces in the emergence of different signaling systems with HTH transcription factors. The archaea and bacteria share a number of ancient families of specific HTH transcription factors. However, they do not share any orthologous HTH proteins in the basal transcription apparatus. This differential relationship of their basal and specific transcriptional machinery poses an apparent conundrum regarding the origins of their transcription apparatus.


Subject(s)
Archaeal Proteins/chemistry , Bacterial Proteins/chemistry , Gene Expression Regulation, Archaeal , Gene Expression Regulation, Bacterial , Helix-Turn-Helix Motifs/genetics , Transcription, Genetic , Amino Acid Sequence , Archaea/genetics , Archaea/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , Models, Molecular , Molecular Sequence Data , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...