Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Russ J Mar Biol ; 48(5): 309-324, 2022.
Article in English | MEDLINE | ID: mdl-36405241

ABSTRACT

Research on seaweeds provides a continual discovery of natural bioactive compounds. The review presents new information on studies of the potential and specific antiviral action of phlorotannin and their derivatives from marine brown algae. Phlorotannin is a polyphenolic derivative and a secondary metabolite from marine brown algae which exhibits a high quality of biological properties. Phlorotannin has a variety of biological activities that include antioxidant, anticancer, antiviral, anti-diabetic, anti-allergic, antibacterial, antihypertensive and immune modulating activities. These phlorotannin properties were revealed by various biochemical and cell-based assays in vitro. This distinctive polyphenol from the marine brown algae may be a potential pharmaceutical and nutraceutical compound. In this review, the extraction, quantification, characterization, purification, and biological applications of phlorotannin are discussed, and antiviral potential is described in detail.

2.
Curr Microbiol ; 70(6): 898-906, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842173

ABSTRACT

A high-throughput method is described, consisting of a colourimetric microtitration for screening phenol-degrading microorganisms, using a mixture of 4-aminoantipyrine and potassium ferricyanide as the colour indicator. This contemporary study summarizes a new method to determine phenol-degrading bacteria isolated from different areas. The method was used for testing a total of 72 bacteria collected from the natural environment and five known strains obtained from diagnostic and research laboratories employing 200 mg/L phenol (the linear range saturation concentration). Depending on the change in colour indicator, the degradation profiles of 11 strains of bacteria are shown, of which seven strains were able to degrade more than 80 % of phenol within 6-8 h, while the other four strains took 12-24 h. Two of the environmentally isolated strains showed high efficiency of phenol degradation and were confirmed by the high-performance liquid chromatography analysis. These strains were identified by 16S rRNA sequencing as unique (Escherichia coli moh1 and Bacillus cereus moh2) and were deposited in the GenBank of NCBI. Two pathogenic strains (Uropathogenic E. coli and Salmonella sp.) were found to be the fast degraders of phenol, which is of medical concern, as phenol is generally used as a disinfectant in hospitals. This method can be used for the estimation and screening of phenol degraders in a single step, for its application in bioremediation as well as in hospitals for screening the phenol resistance of pathogens.


Subject(s)
Bacillus cereus/metabolism , Bacteriological Techniques/methods , Colorimetry/methods , Enterobacteriaceae/metabolism , High-Throughput Screening Assays/methods , Phenol/metabolism , Bacillus cereus/classification , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Biotransformation , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Time Factors
3.
Environ Technol ; 35(17-20): 2194-203, 2014.
Article in English | MEDLINE | ID: mdl-25145172

ABSTRACT

Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.


Subject(s)
Bacillus subtilis/metabolism , Biodegradation, Environmental , Bioelectric Energy Sources , Bioreactors/microbiology , Petroleum/metabolism , Sodium Chloride/isolation & purification , Bacillus subtilis/isolation & purification , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Petroleum/analysis , Sodium Chloride/chemistry , Temperature
4.
Carbohydr Polym ; 98(1): 89-94, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987320

ABSTRACT

In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC%=52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC%=50%) (PH=7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.


Subject(s)
Plant Mucilage/isolation & purification , Tissue Engineering , Abelmoschus/chemistry , Acetone/chemistry , Chemical Fractionation , Methanol/chemistry , Plant Mucilage/chemistry , Solvents/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...