Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 14(1)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35057061

ABSTRACT

(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley's distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).

2.
Cas Lek Cesk ; 159(7-8): 268-274, 2020.
Article in English | MEDLINE | ID: mdl-33445932

ABSTRACT

In order to maximize post-therapeutic quality of life, radio(chemo)therapy becomes preferred over surgery in head-and-neck tumor (HNT) treatment. However, the therapy selection is only based on the clinical experience and patient's preferences as the radiosensitivity markers remain unknown. New possibilities of deciding on the best primary therapy, moving us towards personalized medicine based on quantifiable biomarkers, have been opened by studies on DNA radiation damage and repair in individual patients tumors. Together with the importance of radiotherapy in HNT oncology, we discuss here our preliminary results revealing the existence of several HNT groups with respect to genome stability and repair ability of tumor cells after irradiation. Monitoring of the formation and disappearance of γH2AX/53BP1 foci in tumor cell primo-cultures derived from individual patients suggests that DNA repair capacity of the identified groups correlates with the tumor cell radiosensitivity. Our findings thus improve understanding of HNT biology; nevertheless, the relationship between the repair groups and in vivo response of tumors to radiotherapy must be further studied. Since most HNTs do not suffer from repair defects, although their viability varies after irradiation, pre-therapeutic tests covering the full spectrum of HNT radiosensitivity causes will require the use of a combination of multiple, still undiscovered biomarkers.


Subject(s)
Head and Neck Neoplasms , Histones , DNA Damage , DNA Repair , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Histones/genetics , Histones/metabolism , Humans , Quality of Life
3.
FEBS Open Bio ; 9(5): 870-890, 2019 05.
Article in English | MEDLINE | ID: mdl-30982228

ABSTRACT

Replication stress (RS) is a major driver of genomic instability and tumorigenesis. Here, we investigated whether RS induced by the nucleotide analog fludarabine and specific kinase inhibitors [e.g. targeting checkpoint kinase 1 (Chk1) or ataxia telangiectasia and Rad3-related (ATR)] led to apoptosis or senescence in four cancer cell lines differing in TP53 mutation status and expression of lamin A/C (LA/C). RS resulted in uneven chromatin condensation in all cell types, as evidenced by the presence of metaphasic chromosomes with unrepaired DNA damage, as well as detection of less condensed chromatin in the same nucleus, frequent ultrafine anaphase bridges, and micronuclei. We observed that responses to these chromatin changes may be distinct in individual cell types, suggesting that expression of lamin A/C and lamin B1 (LB1) may play an important role in the transition of damaged cells to senescence. MCF7 mammary carcinoma cells harboring wild-type p53 (WT-p53) and LA/C responded to RS by transition to senescence with a significant reduction of lamin B receptor and LB1 proteins. In contrast, a lymphoid cancer cell line WSU-NHL (WT-p53) lacking LA/C and expressing low levels of LB1 died after several hours, while lines MEC-1 and SU-DHL-4, both with mutated p53, and SU-DHL-4 with mutations in LA/C, died at different rates by apoptosis. Our results show that, in addition to being influenced by p53 mutation status, the response to RS (apoptosis or senescence) may also be influenced by lamin A/C and LB1 status.


Subject(s)
Apoptosis/physiology , Cellular Senescence/physiology , DNA Replication/physiology , Cell Line, Tumor , Humans , Lamin Type A/metabolism , MCF-7 Cells , Mutation , Tumor Suppressor Protein p53/genetics , Vidarabine/analogs & derivatives , Vidarabine/pharmacology
4.
Langmuir ; 35(23): 7496-7508, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30339402

ABSTRACT

The mechanisms underlying cell protection from cryoinjury are not yet fully understood. Recent biological studies have addressed cryopreserved cell survival but have not correlated the cryoprotection effectiveness with the impact of cryoprotectants on the most important cell structure, the nucleus, and the freeze/thaw process. We identified changes of cell nuclei states caused by different types of cryoprotectants and associate them with alterations of the freeze/thaw process in cells. Namely, we investigated both higher-order chromatin structure and nuclear envelope integrity as possible markers of freezing and thawing processes. Moreover, we analyzed in detail the relationship between nuclear envelope integrity, chromatin condensation, freeze/thaw processes in cells, and cryopreservation efficiency for dimethyl sulfoxide, glycerol, trehalose, and antifreeze protein. Our interdisciplinary study reveals how changes in cell nuclei induced by cryoprotectants affect the ability of cells to withstand freezing and thawing and how nuclei changes correlate with processes during freezing and thawing. Our results contribute to the deeper fundamental understanding of the freezing processes, notably in the cell nucleus, which will expand the applications and lead to the rational design of cryoprotective materials and protocols.


Subject(s)
Cell Nucleus/metabolism , Cryopreservation , Cell Line , Cell Survival , Humans
5.
Int J Mol Sci ; 19(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469529

ABSTRACT

DNA double stranded breaks (DSBs) are the most serious type of lesions introduced into chromatin by ionizing radiation. During DSB repair, cells recruit different proteins to the damaged sites in a manner dependent on local chromatin structure, DSB location in the nucleus, and the repair pathway entered. 53BP1 is one of the important players participating in repair pathway decision of the cell. Although many molecular biology details have been investigated, the architecture of 53BP1 repair foci and its development during the post-irradiation time, especially the period of protein recruitment, remains to be elucidated. Super-resolution light microscopy is a powerful new tool to approach such studies in 3D-conserved cell nuclei. Recently, we demonstrated the applicability of single molecule localization microscopy (SMLM) as one of these highly resolving methods for analyses of dynamic repair protein distribution and repair focus internal nano-architecture in intact cell nuclei. In the present study, we focused our investigation on 53BP1 foci in differently radio-resistant cell types, moderately radio-resistant neonatal human dermal fibroblasts (NHDF) and highly radio-resistant U87 glioblastoma cells, exposed to high-LET 15N-ion radiation. At given time points up to 24 h post irradiation with doses of 1.3 Gy and 4.0 Gy, the coordinates and spatial distribution of fluorescently tagged 53BP1 molecules was quantitatively evaluated at the resolution of 10⁻20 nm. Clusters of these tags were determined as sub-units of repair foci according to SMLM parameters. The formation and relaxation of such clusters was studied. The higher dose generated sufficient numbers of DNA breaks to compare the post-irradiation dynamics of 53BP1 during DSB processing for the cell types studied. A perpendicular (90°) irradiation scheme was used with the 4.0 Gy dose to achieve better separation of a relatively high number of particle tracks typically crossing each nucleus. For analyses along ion-tracks, the dose was reduced to 1.3 Gy and applied in combination with a sharp angle irradiation (10° relative to the cell plane). The results reveal a higher ratio of 53BP1 proteins recruited into SMLM defined clusters in fibroblasts as compared to U87 cells. Moreover, the speed of foci and thus cluster formation and relaxation also differed for the cell types. In both NHDF and U87 cells, a certain number of the detected and functionally relevant clusters remained persistent even 24 h post irradiation; however, the number of these clusters again varied for the cell types. Altogether, our findings indicate that repair cluster formation as determined by SMLM and the relaxation (i.e., the remaining 53BP1 tags no longer fulfill the cluster definition) is cell type dependent and may be functionally explained and correlated to cell specific radio-sensitivity. The present study demonstrates that SMLM is a highly appropriate method for investigations of spatiotemporal protein organization in cell nuclei and how it influences the cell decision for a particular repair pathway at a given DSB site.


Subject(s)
Recombinational DNA Repair , Single Molecule Imaging/methods , Tumor Suppressor p53-Binding Protein 1/metabolism , Cell Line, Tumor , Cells, Cultured , Humans , Microscopy, Confocal/methods , Protein Transport
6.
Sci Rep ; 8(1): 14694, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30279538

ABSTRACT

In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.


Subject(s)
Chromatin/drug effects , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Freezing/adverse effects , S Phase/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Chromatin/genetics , DNA Breaks, Double-Stranded/drug effects , Dimethyl Sulfoxide/pharmacology , Fibroblasts , Humans , MCF-7 Cells , Skin/cytology
7.
J Med Chem ; 59(7): 3003-17, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26978566

ABSTRACT

Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.


Subject(s)
Amifostine/pharmacology , DNA Damage/drug effects , DNA Repair/drug effects , Radiation-Protective Agents/pharmacology , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Amifostine/pharmacokinetics , Comet Assay , DNA Breaks, Double-Stranded/drug effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Gamma Rays , Histones/genetics , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells/drug effects , MCF-7 Cells/radiation effects , Mercaptoethylamines/pharmacokinetics , Microscopy, Fluorescence/methods , Tumor Suppressor p53-Binding Protein 1
8.
Crit Rev Eukaryot Gene Expr ; 24(3): 205-23, 2014.
Article in English | MEDLINE | ID: mdl-25072147

ABSTRACT

Recent ground-breaking developments in Omics have generated new hope for overcoming the complexity and variability of biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and proteins interact in the frame of complex networks to preserve genome integrity has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Nuclear architecture and nuclear processes, including DNA damage responses, are precisely organized in space and time. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone, but requires sophisticated structural probing and imaging. Based on the results obtained from studying the relationship between higher-order chromatin structure, DNA double-strand break induction and repair, and the formation of chromosomal translocations, we show the development of Omics solutions especially for radiation research (radiomics) (discussed in this article) and how confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place the Omics data in the context of space and time (discussed in our other article in this issue, "Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B--Structuromics"). Finally, we introduce a novel method of specific chromatin nanotargeting and speculate future perspectives, which may combine nanoprobing and structural nanoscopy to observe structure-function correlations in living cells in real time. Thus, the Omics networks obtained from function analyses may be enriched by real-time visualization of Structuromics.


Subject(s)
DNA Damage/radiation effects , DNA Repair , DNA/radiation effects , Genomic Instability/radiation effects , Radiobiology , Cell Line, Tumor , Cell Nucleus/genetics , Chromatin/radiation effects , DNA Damage/genetics , Genome/genetics , Genome/radiation effects , Humans , Radiation, Ionizing
9.
Crit Rev Eukaryot Gene Expr ; 24(3): 225-47, 2014.
Article in English | MEDLINE | ID: mdl-25072148

ABSTRACT

Recent groundbreaking developments in Omics and bioinformatics have generated new hope for overcoming the complexity and variability of (radio)biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and dozens of proteins interact in the frame of complex signaling and repair pathways (or, rather, networks) to preserve the integrity of the genome has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone; it requires sophisticated structural probing and imaging. In the first part of this review, the article "Giving Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A--Radiomics," we showed the development of different Omics solutions and how they are contributing to a better understanding of cellular radiation response. In this Part B we show how high-resolution confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place Omics data in the context of space and time. The dynamics of double-strand breaks during repair processes and chromosomal rearrangements at the microscale correlated to aberration induction are explained. For the first time we visualize pan-nuclear nucleosomal rearrangements and clustering at the nanoscale during repair processes. Finally, we introduce a novel method of specific chromatin nanotargeting based on a computer database search of uniquely binding oligonucleotide combinations (COMBO-FISH). With these challenging techniques on hand, we speculate future perspectives that may combine specific COMBO-FISH nanoprobing and structural nanoscopy to observe structure-function correlations in living cells in real-time. Thus, the Omics networks obtained from function analyses may be enriched by real-time visualization of Structuromics.


Subject(s)
Cell Nucleus/radiation effects , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/genetics , Translocation, Genetic/radiation effects , Chromatin/genetics , Chromatin/radiation effects , DNA/radiation effects , Genome/genetics , Genomic Instability , Humans , Microscopy, Confocal , Radiation, Ionizing , Translocation, Genetic/genetics
10.
Appl Radiat Isot ; 83 Pt B: 128-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23415104

ABSTRACT

According to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure-the problematics addressed in this work. The consequences for the mechanism of chromosomal translocations are compared for gamma rays and proton beams.


Subject(s)
Chromatin/chemistry , DNA Damage , DNA Repair , Gamma Rays , Protons , Cell Nucleus/radiation effects , Cells, Cultured , Humans , Microscopy , Translocation, Genetic
11.
Appl Radiat Isot ; 83 Pt B: 177-85, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23454236

ABSTRACT

Cell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient. Moreover, specific chromatin structure of granulocytes probably influences DSB induction.


Subject(s)
Cell Differentiation , Chromatin/chemistry , DNA Damage , DNA Repair , Cells, Cultured , Humans , In Situ Hybridization, Fluorescence , Protein Conformation
12.
Biochim Biophys Acta ; 1833(3): 767-79, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23269287

ABSTRACT

Terminally-differentiated cells cease to proliferate and acquire specific sets of expressed genes and functions distinguishing them from less differentiated and cancer cells. Mature granulocytes show lobular structure of cell nuclei with highly condensed chromatin in which HP1 proteins are replaced by MNEI. These structural features of chromatin correspond to low level of gene expression and the loss of some important functions as DNA damage repair, shown in this work and, on the other hand, acquisition of a new specific function consisting in the release of chromatin extracellular traps in response to infection by pathogenic microbes. Granulocytic differentiation is incomplete in myeloid leukemia and is manifested by persistence of lower levels of HP1γ and HP1ß isoforms. This immaturity is accompanied by acquisition of DDR capacity allowing to these incompletely differentiated multi-lobed neutrophils of AML patients to respond to induction of DSB by γ-irradiation. Immature granulocytes persist frequently in blood of treated AML patients in remission. These granulocytes contrary to mature ones do not release chromatin for NETs after activation with phorbol myristate-12 acetate-13 and do not exert the neutrophil function in immune defence. We suggest therefore the detection of HP1 expression in granulocytes of AML patients as a very sensitive indicator of their maturation and functionality after the treatment. Our results show that the changes in chromatin structure underlie a major transition in functioning of the genome in immature granulocytes. They show further that leukemia stem cells can differentiate ex vivo to mature granulocytes despite carrying the translocation BCR/ABL.


Subject(s)
Cell Differentiation , Chromatin/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA Damage , Granulocytes/pathology , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Neutrophils/pathology , Blotting, Western , Cell Proliferation , Cells, Cultured , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Fluorescent Antibody Technique , Granulocytes/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tetradecanoylphorbol Acetate
13.
Radiat Res ; 175(6): 708-18, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21438660

ABSTRACT

The purpose of this work was to determine how fractionated radiation used in the treatment of tumors affects the ability of cancer as well as normal cells to repair induced DNA double-strand breaks (DSBs) and how cells that have lost this ability die. Lymphocytic leukemia cells (MOLT4) were used as an experimental model, and the results were compared to those for normal cell types. The results show that cancer and normal cells were mostly unable to repair all DSBs before the next radiation dose induced new DNA damage. Accumulation of DSBs was observed in normal human fibroblasts and healthy lymphocytes irradiated in vitro after the second radiation dose. The lymphocytic leukemia cells irradiated with 4 × 1 Gy and a single dose of 4 Gy had very similar survival; however, there was a big difference between human fibroblasts irradiated with 4 × 1.5 Gy and a single dose of 6 Gy. These results suggest that exponentially growing lymphocytic leukemia cells, similar to rapidly proliferating tumors, are not very sensitive to fraction size, in contrast to the more slowly growing fibroblasts and most late-responding (radiation therapy dose-limiting) normal tissues, which have a low proliferation index.


Subject(s)
Apoptosis/radiation effects , DNA Breaks, Double-Stranded , Dose Fractionation, Radiation , Cell Proliferation/radiation effects , Cellular Senescence/radiation effects , DNA Repair , Fibroblasts/physiology , Fibroblasts/radiation effects , Humans , Leukemia, Lymphoid/radiotherapy , Lymphocytes/radiation effects , Lymphocytes/ultrastructure , Tumor Cells, Cultured
14.
Nucleic Acids Res ; 35(15): 5001-13, 2007.
Article in English | MEDLINE | ID: mdl-17636313

ABSTRACT

DNA topoisomerase IIalpha (topo IIalpha) is an essential nuclear enzyme and its unique decatenation activity has been implicated in many aspects of chromosome dynamics such as chromosome replication and segregation during mitosis. Here we show that chromatin-associated protein HMGB1 (a member of the large family of HMG-box proteins with possible functions in DNA replication, transcription, recombination and DNA repair) promotes topo IIalpha-mediated catenation of circular DNA, relaxation of negatively supercoiled DNA and decatenation of kinetoplast DNA. HMGB1 interacts with topo IIalpha and this interaction, like the stimulation of the catalytic activity of the enzyme, requires both HMG-box domains of HMGB1. A mutant of HMGB1, which cannot change DNA topology stimulates DNA decatenation by topo IIalpha indistinguishably from the wild-type protein. Although HMGB1 stimulates ATP hydrolysis by topo IIalpha, the DNA cleavage is much more enhanced. The observed abilities of HMGB1 to interact with topo IIalpha and promote topo IIalpha binding to DNA suggest a mechanism by which HMGB1 stimulates the catalytic activity of the enzyme via enhancement of DNA cleavage.


Subject(s)
Antigens, Neoplasm/metabolism , DNA Topoisomerases, Type II/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , High Mobility Group Proteins/metabolism , Repressor Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Catalysis , DNA/chemistry , DNA/ultrastructure , DNA, Circular/metabolism , DNA, Kinetoplast/metabolism , DNA, Superhelical/metabolism , Diketopiperazines , Electrophoresis, Agar Gel , Enzyme Inhibitors/pharmacology , HMGB1 Protein , Humans , Nucleic Acid Conformation , Piperazines/pharmacology , Rats
15.
J Biol Chem ; 277(9): 7157-64, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11748232

ABSTRACT

The recently cloned gene p73 is a close homologue of p53, which is a crucial tumor suppressor gene for preventing the malignant transformation of cells by inducing cell cycle arrest and apoptosis. Previous reports have shown that architectural DNA-bending/looping chromosomal proteins HMGB1 and HMGB2 (formerly known as HMG1 and HMG2), which function in a number of biological processes including transcription and DNA repair, interact in vitro with p53 and stimulate p53 binding to DNA containing p53 consensus sites. Here, we report that HMGB1 physically interacts with two splicing variants of p73, alpha and beta (pull-down assay), and enhances binding of p73 to specific cognate DNA sites (gel-shift assay). Both HMG box domains of HMGB1, A and B, interact with p73alpha. Association of HMGB1 with p73, like the demonstrated ability of HMGB1 to stimulate p73 binding to different p53-responsive elements, requires the oligomerization region and/or region between DNA-binding domain and oligomerization domain of p73 (residues 312-381). Transient transfections revealed that ectopically expressed or endogenous HMGB1 and HMGB2 (antisense strategy) significantly inhibit in vivo both p73alpha/beta- and p53-dependent transactivation from the Bax gene promoter (and much less from Mdm2 and p21(waf1) promoters) in p53-deficient SAOS-2 cells. In contrast, HMGB1 and HGMB2 stimulate p73- or p53-dependent transactivation in p53-deficient H1299 cells, irrespective of the promoter used. Our results suggest that ubiquitously expressed HMGB1 and HMGB2 have potential to cell- and promoter-specifically down- or up-regulate in vivo transcriptional activity of different members of the p53 family. A possible mechanism of HMGB1-mediated modulation of p73- and p53-dependent transactivation is discussed.


Subject(s)
DNA-Binding Proteins/genetics , Down-Regulation , Genes, p53/genetics , HMGB1 Protein/metabolism , HMGB2 Protein/metabolism , Nuclear Proteins/genetics , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins/genetics , Transcriptional Activation , Alternative Splicing , Cell Line , DNA-Binding Proteins/chemistry , Genes, Tumor Suppressor , Glutathione Transferase/metabolism , Humans , Luciferases/metabolism , Nuclear Proteins/chemistry , Plasmids/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Biosynthesis , Protein Structure, Tertiary , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2 , Sp1 Transcription Factor/metabolism , Transfection , Tumor Protein p73 , Tumor Suppressor Proteins , Up-Regulation , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...