Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392974

ABSTRACT

Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.

2.
Phytopathology ; 114(3): 503-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37913631

ABSTRACT

Replicated field studies were conducted to evaluate the factors that could influence the efficacy of Paraburkholderia phytofirmans PsJN for the control of Pierce's disease of grape, as well as to determine the extent to which disease control was systemic within plants. Topical applications of PsJN with an organosilicon surfactant was an effective way to introduce this bacterium under field conditions and provided similar levels of disease control as its mechanical inoculation. Disease incidence in inoculated shoots was often reduced two- to threefold when PsJN was inoculated a single time as much as 3 weeks before Xylella fastidiosa and up to 5 weeks after the pathogen. Inoculation of a shoot with PsJN greatly decreased the probability of any symptoms rather than reducing the severity of disease, suggesting a systemic protective response of individual shoots. Although the likelihood of disease symptoms on shoots inoculated with the pathogen on PsJN-treated plants was lower than on control plants inoculated only with the pathogen, the protection conferred by PsJN was not experienced by all shoots on a given plant. This suggested that any systemic resistance was spatially limited. Whereas the population size of PsJN increased to more than 106 cells/g and spread more than 1 m within 12 weeks after its inoculation alone into grape, its population size subsequently decreased greatly after about 5 weeks, and its distal dispersal in stems was restricted when co-inoculated with X. fastidiosa. PsJN may experience collateral damage from apparent host responses induced when both species are present.


Subject(s)
Burkholderiaceae , Vitis , Xylella , Vitis/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Burkholderiaceae/physiology
3.
Mol Plant Microbe Interact ; 35(9): 857-866, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35704683

ABSTRACT

Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Vitis , Xylella , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Animals , Biofilms , Insecta , Plant Diseases/microbiology , Type V Secretion Systems/metabolism , Virulence , Vitis/microbiology
4.
Phytopathology ; 109(2): 248-256, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30540526

ABSTRACT

Effective preventive measures and therapies are lacking for control of Pierce's disease of grape caused by the xylem-colonizing bacterium Xylella fastidiosa responsible for serious losses in grape production. In this study we explored the potential for endophytic bacteria to alter the disease process. While most endophytic bacteria found within grape did not grow or multiply when inoculated into mature grape vines, Paraburkholderia phytofirmans strain PsJN achieved population sizes as large as 106 cells/g and moved 1 m or more within 4 weeks after inoculation into vines. While X. fastidiosa achieved large population sizes and moved extensively in grape when inoculated alone, few viable cells were recovered from plants in which it was co-inoculated with strain PsJN and the incidence of leaves exhibiting scorching symptoms typical of Pierce's disease was consistently greatly reduced from that in control plants. Suppression of disease symptoms occurred not only when strain PsJN was co-inoculated with the pathogen by puncturing stems in the same site in plants, but also when inoculated at the same time but at different sites in the plant. Large population sizes of strain PsJN could be established in both leaf lamina and petioles by topical application of cell suspensions in 0.2% of an organo-silicon surfactant conferring low surface tension, and such treatments were as effective as direct puncture inoculations of this biocontrol strain in reducing disease severity. While inoculation of strain PsJN into plants by either method at the same time as or even 4 weeks after that of the pathogen resulted in large reductions in disease severity, much less disease control was conferred by inoculation of PsJN 4 weeks prior to that of the pathogen. The expression of grapevine PR1 and ETR1 within 3 weeks of inoculation was substantially higher in plants inoculated with both X. fastidiosa and strain PsJN compared with that in plants inoculated only with the pathogen or strain PsJN, suggesting that this biological control agent reduces disease by priming expression of innate disease resistance pathways in plants that otherwise would have exhibited minimal responses to the pathogen. Strain PsJN thus appears highly efficacious for the control of Pierce's disease when used as an eradicant treatment that can be easily made even by spray application.


Subject(s)
Plant Diseases/microbiology , Vitis , Xylella , Disease Resistance/genetics , Humans , Xylem/microbiology
5.
Proc Natl Acad Sci U S A ; 111(37): E3910-8, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25197068

ABSTRACT

Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.


Subject(s)
Bacterial Adhesion , Cell Membrane/metabolism , Secretory Vesicles/metabolism , Vitis/microbiology , Xylella/pathogenicity , Adhesiveness , Bacterial Proteins/metabolism , Cell Membrane/ultrastructure , Models, Biological , Mutation/genetics , Nanoparticles/ultrastructure , Plant Diseases/microbiology , Secretory Vesicles/ultrastructure , Surface Properties , Xylella/ultrastructure
6.
Phytopathology ; 104(1): 27-33, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24571393

ABSTRACT

The hypothesis that a wild-type strain of Xylella fastidiosa would restore the ability of rpfF mutants blocked in diffusible signal factor production to be transmitted to new grape plants by the sharpshooter vector Graphocephala atropunctata was tested. While the rpfF mutant was very poorly transmitted by vectors irrespective of whether they had also fed on plants infected with the wild-type strain, wild-type strains were not efficiently transmitted if vectors had fed on plants infected with the rpfF mutant. About 100-fewer cells of a wild-type strain attached to wings of a vector when suspended in xylem sap from plants infected with an rpfF mutant than in sap from uninfected grapes. The frequency of transmission of cells suspended in sap from plants that were infected by the rpfF mutant was also reduced over threefold. Wild-type cells suspended in a culture supernatant of an rpfF mutant also exhibited 10-fold less adherence to wings than when suspended in uninoculated culture media. A factor released into the xylem by rpfF mutants, and to a lesser extent by the wild-type strain, thus inhibits their attachment to, and thus transmission by, sharpshooter vectors and may also enable them to move more readily through host plants.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Hemiptera/microbiology , Insect Vectors/microbiology , Plant Diseases/microbiology , Vitis/microbiology , Xylella/genetics , Animals , Bacterial Proteins/metabolism , Gene Deletion , Host-Pathogen Interactions , Mutation , Phenotype , Plant Diseases/statistics & numerical data , Signal Transduction , Virulence , Vitis/immunology , Xylella/metabolism , Xylella/pathogenicity , Xylem/immunology , Xylem/microbiology
7.
Mol Plant Microbe Interact ; 27(3): 244-54, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24499029

ABSTRACT

The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in 'Freedom' grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental 'Freedom' plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , Insect Vectors/microbiology , Vitis/microbiology , Xylella/physiology , Animals , Bacterial Proteins/genetics , Cell Adhesion , Disease Susceptibility , Fatty Acids, Monounsaturated/analysis , Fatty Acids, Monounsaturated/metabolism , Gene Expression , Gene Expression Regulation, Bacterial , Green Fluorescent Proteins , Mutation , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Diseases/statistics & numerical data , Plant Roots/immunology , Plant Roots/microbiology , Plant Shoots/immunology , Plant Shoots/microbiology , Plants, Genetically Modified , Spectrometry, Mass, Electrospray Ionization , Virulence , Vitis/immunology , Xylella/genetics , Xylella/pathogenicity , Xylem/immunology , Xylem/microbiology
8.
J Bacteriol ; 195(23): 5273-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24056101

ABSTRACT

Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Xylella/metabolism , Bacterial Proteins/genetics , Mutation , Plant Diseases/microbiology , Vitis/microbiology , Xylella/genetics , Xylella/pathogenicity
9.
Appl Environ Microbiol ; 79(11): 3444-54, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23542613

ABSTRACT

Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.


Subject(s)
3',5'-Cyclic-GMP Phosphodiesterases/metabolism , Anti-Bacterial Agents/pharmacology , Cell Communication/physiology , Phenotype , Xylella/enzymology , Xylella/pathogenicity , Amino Acid Sequence , Benzothiazoles , Biofilms/drug effects , Biofilms/growth & development , DNA Primers/genetics , Diamines , Drug Resistance/genetics , Escherichia coli , Gene Deletion , Genetic Complementation Test , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Sequence Data , Organic Chemicals , Pseudomonas aeruginosa/enzymology , Quinolines , Sequence Alignment , Tobramycin/pharmacology , Vitis/microbiology , Xylella/drug effects , Xylella/physiology
10.
Genetics ; 169(1): 51-63, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15371366

ABSTRACT

The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X rays, we are screening these mutants to identify additional genes that cause increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype cosegregates with the deletion allele and are obtaining multipoint survival-vs.-dose assays in at least one homozygous diploid and two haploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1, and VID21/EAF1 and discuss their potential roles in repair. Eight of these genes cause a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, results in at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultraviolet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino acids are also X-ray sensitive, which confirms that methylation of the lysine-79 residue is required for effective repair of radiation damage.


Subject(s)
Mutation/genetics , Radiation Tolerance/genetics , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/radiation effects , DNA Damage , DNA Repair/genetics , Sequence Deletion , X-Rays
11.
Radiat Res ; 160(1): 14-24, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12816519

ABSTRACT

We have used the recently completed set of all homozygous diploid deletion mutants in budding yeast, S. cerevisiae, to screen for new mutants conferring sensitivity to ionizing radiation. In each strain a different open reading frame (ORF) has been replaced with a cassette containing unique 20-mer sequences that allow the relative abundance of each strain in a pool to be determined by hybridization to a high-density oligonucleotide array. Putative radiation-sensitive mutants were identified as having a reduced abundance in the pool of 4,627 individual deletion strains after irradiation. Of the top 33 strains most sensitive to radiation in this assay, 14 contained genes known to be involved in DNA repair. Eight of the remaining deletion mutants were studied. Only one, which deleted for the ORF YDR014W (which we name RAD61), conferred reproducible radiation sensitivity in both the haploid and diploid deletions and had no problem with spore viability when the haploid was backcrossed to wild-type. The rest showed only marginal sensitivity as haploids, and many had problems with spore viability when backcrossed, suggesting the presence of gross aneuploidy or polyploidy in strains initially presumed haploid. Our results emphasize that secondary mutations or deviations from euploidy can be a problem in screening this resource for sensitivity to ionizing radiation.


Subject(s)
Genome, Fungal , Radiation Tolerance/genetics , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/genetics , Blotting, Western , Cell Survival , Cesium Radioisotopes , Crosses, Genetic , DNA/metabolism , DNA Repair , Dose-Response Relationship, Radiation , Genotype , Haploidy , Homozygote , Mutation , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Ploidies , Polymerase Chain Reaction , Radiation, Ionizing , Saccharomyces cerevisiae Proteins/genetics , Scattering, Radiation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...