Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Cell Mol Med ; 28(6): e18161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445787

ABSTRACT

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Subject(s)
Cisplatin , Prebiotics , Animals , Mice , Cisplatin/adverse effects , Kaolin , Weight Gain , Colon
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339131

ABSTRACT

Glucagon-like peptide-2 (GLP-2) has been reported to influence gastrointestinal motor responses, exerting a modulatory role on enteric neurotransmission. To our knowledge, no data on GLP-2 effects on the motility of the isolated ileum are available; therefore, we investigated whether GLP-2 affects the contractile activity of mouse ileal preparations and the neurotransmitters engaged. Ileal preparations showed tetrodotoxin (TTX)- and atropine-insensitive spontaneous contractile activity, which was unaffected by the nitric oxide synthesis inhibitor, L-NNA. GLP-2 depressed the spontaneous contractility, an effect that was abolished by TTX or L-NNA and not influenced by atropine. Electrical field stimulation induced TTX- and atropine-sensitive contractile responses, which were reduced in amplitude by GLP-2 even in the presence of L-NNA. Immunohistochemical results showed a significant increase in nNOS-positive fibers in the ileal muscle wall and a significant decrease in ChAT-positive myenteric neurons in GLP-2-exposed preparations. The present results offer the first evidence that GLP-2 acts on ileal preparations. The hormone appears to depress ileal contractility through a dual opposite modulatory effect on inhibitory nitrergic and excitatory cholinergic neurotransmission. From a physiological point of view, it could be hypothesized that GLP-2 inhibitory actions on ileal contractility can increase transit time, facilitating nutrient absorption.


Subject(s)
Glucagon-Like Peptide 2 , Synaptic Transmission , Mice , Animals , Muscle Contraction/physiology , Nitroarginine/pharmacology , Ileum , Cholinergic Agents/pharmacology , Atropine Derivatives/pharmacology , Electric Stimulation
3.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G187-G194, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38111974

ABSTRACT

Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.


Subject(s)
Adiponectin , Nitric Oxide , Animals , Mice , Adiponectin/pharmacology , Atropine/pharmacology , Ileum/metabolism , Muscle Contraction/physiology , Nitric Oxide/metabolism , Tetrodotoxin/pharmacology
4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108603

ABSTRACT

Irritable Bowel syndrome (IBS) is a highly widespread gastrointestinal disorder whose symptomatology mainly affect the large intestine. Among the risk factors, psychosocial stress is the most acknowledged. The repeated water avoidance stress (rWAS) is considered an animal model of psychosocial stress that is capable of mimicking IBS. Otilonium bromide (OB), which is orally administered, concentrates in the large bowel and controls most of the IBS symptoms in humans. Several reports have shown that OB has multiple mechanisms of action and cellular targets. We investigated whether the application of rWAS to rats induced morphological and functional alterations of the cholinergic neurotransmission in the distal colon and whether OB prevented them. The results demonstrated that rWAS affects cholinergic neurotransmission by causing an increase in acid mucin secretion, in the amplitude of electrically evoked contractile responses, abolished by atropine, and in the number of myenteric neurons expressing choline acetyltransferase. OB counteracted these changes and also showed an intrinsic antimuscarinic effect on the post-synaptic muscular receptors. We assume that the rWAS consequences on the cholinergic system are linked to corticotrophin-releasing factor-1 (CRF1) receptor activation by the CRF hypothalamic hormone. OB, by interfering with the CFR/CRFr activation, interrupted the cascade events responsible for the changes affecting the rWAS rat colon.


Subject(s)
Irritable Bowel Syndrome , Humans , Rats , Animals , Colon , Muscarinic Antagonists/pharmacology , Receptors, Corticotropin-Releasing Hormone , Water/pharmacology
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674598

ABSTRACT

Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.


Subject(s)
Adiponectin , Gastric Fundus , Humans , Animals , Mice , Adiponectin/metabolism , Adipose Tissue/metabolism , Muscle, Smooth/metabolism , Biomarkers/metabolism
6.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36555750

ABSTRACT

It has been reported that adiponectin (ADPN) and resistin are co-secreted by white mouse adipocytes and exert similar inhibitory effects in the mouse gastric fundus, in which resistin was observed to increase neuronal nitric oxide synthase (nNOS) expression. On these grounds, the present work aimed to investigate whether the effects of the two adipokines on the neurally-induced relaxant responses potentiate each other and whether there is a possible correlation with changes in nNOS expression in preparations from the mouse gastric fundus. In carbachol (CCh)-precontracted strips, electrical field stimulation elicited nitrergic relaxant responses, whose amplitude was increased by ADPN or resistin, but no additional enhancements were observed in their concomitant presence. Western blot and immunofluorescence analyses revealed that ADPN, like resistin, was able to up-regulate nNOS expression and to increase the percentage of nNOS-positive neurons in the myenteric plexus: co-treatment with the two adipokines did not induce additional changes. The results indicate that the two adipokines modulate nitrergic neurotransmission, and both do so by up-regulating nNOS expression. Therefore, nNOS appears to be a shared target for the two adipokines' effects, which, rather than mutually reinforcing each other, may represent a dual physiological control mechanism to guarantee gastric fundus relaxation.


Subject(s)
Gastric Fundus , Muscle Contraction , Mice , Animals , Muscle Contraction/physiology , Muscle Relaxation , Adiponectin/pharmacology , Nitric Oxide Synthase Type I/metabolism , Resistin/pharmacology , Nitric Oxide/metabolism
7.
Front Physiol ; 13: 930197, 2022.
Article in English | MEDLINE | ID: mdl-35910552

ABSTRACT

Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.

8.
Curr Protein Pept Sci ; 23(2): 61-69, 2022.
Article in English | MEDLINE | ID: mdl-35176986

ABSTRACT

Glucagon-Like Peptide-2 (GLP-2) is a pleiotropic hormone that plays several roles in different organs and tissues, so being involved in many physiological processes. Among these, it regulates gastrointestinal (GI) tract function binding to a specific G-protein coupled receptor (GLP-2R). Of note, GLP-2R is widely expressed in different cells of the GI tract, including excitatory and inhibitory neurons of the enteric nervous system. In the gut, GLP-2 has been reported to play numerous actions, among which the modulation of motility. Nevertheless, most of the GLP-2 effects and its role in physiological processes are still debated. The aim of this minireview is to summarize the data present in the literature on the control of GI motility by GLP-2, the mechanism through which it occurs, and to discuss the physiological implications of such effects. A better understanding of the role of GLP-2 on GI motor responses may be of importance for the development of new therapeutic approaches in GI dysmotility.


Subject(s)
Enteric Nervous System , Glucagon-Like Peptide 2 , Enteric Nervous System/metabolism , Gastrointestinal Motility , Gastrointestinal Tract/metabolism , Glucagon-Like Peptide 2/metabolism , Glucagon-Like Peptide 2/pharmacology , Receptors, Glucagon/metabolism
9.
Int J Mol Sci ; 22(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34576155

ABSTRACT

It is known that nitric oxide (NO) plays a key physiological role in the control of gastrointestinal (GI) motor phenomena. In this respect, NO is considered as the main non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitter responsible for smooth muscle relaxation. Moreover, many substances (including hormones) have been reported to modulate NO production leading to changes in motor responses, further underlying the importance of this molecule in the control of GI motility. An impaired NO production/release has indeed been reported to be implicated in some GI dysmotility. In this article we wanted to focus on the influence of NO on gastric motility by summarizing knowledge regarding its role in both physiological and pathological conditions. The main role of NO on regulating gastric smooth muscle motor responses, with particular reference to NO synthases expression and signaling pathways, is discussed. A deeper knowledge of nitrergic mechanisms is important for a better understanding of their involvement in gastric pathophysiological conditions of hypo- or hyper-motility states and for future therapeutic approaches. A possible role of substances which, by interfering with NO production, could prove useful in managing such motor disorders has been advanced.


Subject(s)
Muscle, Smooth/metabolism , Nitric Oxide/metabolism , Animals , Gastrointestinal Motility/physiology , Humans , Muscle Contraction/physiology , Muscle Relaxation/physiology , Neurotransmitter Agents/metabolism , Nitric Oxide Synthase/metabolism , Synaptic Transmission/physiology
10.
J Cell Mol Med ; 25(14): 6988-7000, 2021 07.
Article in English | MEDLINE | ID: mdl-34109728

ABSTRACT

Irritable bowel syndrome (IBS) is a highly prevalent gastrointestinal disorder characterized by periods of remission and exacerbation. Among the risk factors to develop IBS, psychosocial stress is widely acknowledged. The water avoidance stress repeatedly applied (rWAS) is considered effective to study IBS etio-pathogenesis. Otilonium bromide (OB), a drug with multiple mechanisms of action, is largely used to treat IBS patients. Orally administered, it concentrates in the large bowel and significantly ameliorates the IBS symptomatology. Presently, we tested whether rWAS rats developed neuro-muscular abnormalities in the distal colon and whether OB treatment prevented them. The investigation was focussed on the nitrergic neurotransmission by combining functional and morphological methodologies. The results confirm rWAS as reliable animal model to investigate the cellular mechanisms responsible for IBS: exposure to one-hour psychosocial stress for 10 days depressed muscle contractility and increased iNOS expression in myenteric neurons. OB treatment counteracted these effects. We hypothesize that these effects are due to the corticotropin-releasing factor (CRF) release, the main mediator of the psychosocial stress, followed by a CRF1receptor activation. OB, that was shown to prevent CRF1r activation, reasonably interrupted the cascade events that bring to the mechanical and immunohistochemical changes affecting rWAS rat colon.


Subject(s)
Colon/drug effects , Gastrointestinal Agents/therapeutic use , Irritable Bowel Syndrome/drug therapy , Nitric Oxide/metabolism , Quaternary Ammonium Compounds/therapeutic use , Stress, Psychological/metabolism , Animals , Colon/metabolism , Colon/pathology , Corticotropin-Releasing Hormone/metabolism , Gastrointestinal Agents/administration & dosage , Gastrointestinal Agents/pharmacology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/metabolism , Male , Nitric Oxide Synthase Type II/metabolism , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/pharmacology , Rats , Rats, Wistar , Receptors, Corticotropin-Releasing Hormone/metabolism , Stress, Psychological/complications
11.
Eur Eat Disord Rev ; 29(4): 588-599, 2021 07.
Article in English | MEDLINE | ID: mdl-33939220

ABSTRACT

OBJECTIVE: The recent conceptualization of ghrelin as a stress hormone suggested that its chronic alterations may have a role in maintaining overeating behaviors in subjects with eating disorders (EDs) reporting childhood traumatic experiences. The aim of this study was to investigate the alterations of ghrelin levels in patients with EDs, their associations with early trauma, binge and emotional eating, and possible moderation/mediation models. METHOD: Sixty-four patients with EDs and 42 healthy controls (HCs) had their plasma ghrelin levels measured and completed questionnaires evaluating general and ED-specific psychopathology, emotional eating, and childhood traumatic experiences. RESULTS: Participants with anorexia nervosa had higher ghrelin levels than HCs in body mass index (BMI)-adjusted comparisons. Moreover, patients reporting a history of childhood trauma had higher ghrelin levels. Childhood sexual abuse (CSA), BMI, and self-induced vomiting were independent predictors of ghrelin levels. Moderation analyses showed that ghrelin levels were associated with binge and emotional eating only for higher levels of childhood trauma. Elevated ghrelin was a significant mediator for the association of CSA with binge eating. CONCLUSIONS: These results support the hypothesis that chronic alterations in ghrelin levels following childhood traumatic experiences could represent a neurobiological maintaining factor of pathological overeating behaviors in EDs.


Subject(s)
Binge-Eating Disorder , Bulimia , Feeding and Eating Disorders , Binge-Eating Disorder/psychology , Biomarkers , Bulimia/psychology , Ghrelin , Humans
12.
Mol Cell Biochem ; 476(8): 3111-3126, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33837873

ABSTRACT

The widespread environmental pollutant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) is a non-dioxin-like toxicant. It is a potential carcinogen compound able to induce gap junction (GJ) intercellular communication impairment, probably the first non-genomic event leading to tumor promotion. Although PCBs have been known for many years, the molecular mode of PCB153 action is still unclear. Recent studies from our research group have shown that the toxicant elicits a transient modulation of connexin (Cx) 43-formed GJs in hepatic stem-like WB-F344 cells involving sphingosine 1-phosphate (S1P) path. Taking into account that other strictly related bioactive sphingolipids, such as ceramide (Cer), may have different effects from S1P, here we aim to clarify the signaling paths engaged by PCB153 in the control of GJs, focusing primarily on the role of Cer. Accordingly, we have achieved a combined biomolecular and electrophysiological analysis of GJs in cultured WB-F344 cells treated with PCB153 at different time points. We have found that the toxicant elicited a time-dependent regulation of GJs formed by different Cx isoforms, through a transient modulation of Cer/Cer kinase (CerK) axis and, in turn, of protein phosphatase 2A (PP2A). Our new findings demonstrate the existence of a specific molecular mechanism downstream to Cer, which distinctly affects the voltage-dependent and -independent GJs in liver stem-like cells, and open new opportunities for the identification of additional potential targets of these environmental toxicants.


Subject(s)
Ceramides/metabolism , Gap Junctions/pathology , Liver/pathology , Polychlorinated Biphenyls/pharmacology , Protein Phosphatase 2/metabolism , Stem Cells/pathology , Animals , Cell Communication , Cells, Cultured , Gap Junctions/drug effects , Gap Junctions/metabolism , Liver/drug effects , Liver/metabolism , Protein Phosphatase 2/genetics , Rats , Signal Transduction , Stem Cells/drug effects , Stem Cells/metabolism
13.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348652

ABSTRACT

Some adipokines, such as adiponectin (ADPN), other than being implicated in the central regulation of feeding behavior, may influence gastric motor responses, which are a source of peripheral signals that also influence food intake. The present study aims to elucidate the signaling pathways through which ADPN exerts its actions in the mouse gastric fundus. To this purpose, we used a multidisciplinary approach. The mechanical results showed that ADPN caused a decay of the strip basal tension, which was abolished by the nitric oxide (NO) synthesis inhibitor, L-NG-nitro arginine (L-NNA). The electrophysiological experiments confirmed that all ADPN effects were abolished by L-NNA, except for the reduction of Ca2+ current, which was instead prevented by the inhibitor of AMP-activated protein kinase (AMPK), dorsomorphin. The activation of the AMPK signaling by ADPN was confirmed by immunofluorescence analysis, which also revealed the ADPN R1 receptor (AdipoR1) expression in glial cells of the myenteric plexus. In conclusion, our results indicate that ADPN exerts an inhibitory action on the gastric smooth muscle by acting on AdipoR1 and involving the AMPK signaling pathway at the peripheral level. These findings provide novel bases for considering AMPK as a possible pharmacologic target for the potential treatment of obesity and eating disorders.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adiponectin/pharmacology , Gastric Mucosa/metabolism , Muscle, Smooth/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Female , Gastric Fundus/drug effects , Gastric Fundus/metabolism , Gastric Mucosa/drug effects , Mice , Mice, Inbred C57BL , Muscle, Smooth/drug effects , Obesity/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Adiponectin/metabolism
14.
World J Gastroenterol ; 26(20): 2472-2478, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32523305

ABSTRACT

The regulation of food intake is a complex mechanism, and the hypothalamus is the main central structure implicated. In particular, the arcuate nucleus appears to be the most critical area in the integration of multiple peripheral signals. Among these signals, those originating from the white adipose tissue and the gastrointestinal tract are known to be involved in the regulation of food intake. The present paper focuses on adiponectin, an adipokine secreted by white adipose tissue, which is reported to have a role in the control of feeding by acting centrally. The recent observation that adiponectin is also able to influence gastric motility raises the question of whether this action represents an additional peripheral mechanism that concurs with the central effects of the hormone on food intake. This possibility, which represents an emerging aspect correlating the central and peripheral effects of adiponectin in the hunger-satiety cycle, is discussed in the present paper.


Subject(s)
Adiponectin/metabolism , Arcuate Nucleus of Hypothalamus/physiology , Feeding Behavior/physiology , Stomach/physiology , Adipose Tissue, White/metabolism , Animals , Gastrointestinal Motility , Humans , Models, Animal , Pro-Opiomelanocortin/metabolism , Satiety Response/physiology
15.
Psychiatry Res ; 290: 113071, 2020 08.
Article in English | MEDLINE | ID: mdl-32464424

ABSTRACT

It has been hypothesized that leptin level alterations in Eating Disorders (EDs) represent a maintaining factor for pathological reward-related ED behaviors, given leptin role in the dopaminergic reward systems. The aim of the present study was to evaluate the role of leptin in EDs as a mediator for the relationship between Body Mass Index (BMI) and several pathological behaviors, such as dietary restraint, compensatory exercise, vomiting, binge eating and emotional eating. Sixty-two patients with EDs and 41 healthy controls (HC) had their blood drawn and completed psychometric tests for the evaluation of general psychopathology, ED psychopathology and emotional eating. Moderated linear regression models showed that, in the presence of high levels of ED psychopathology, leptin levels were negatively associated with dietary restraint and compensatory exercise, and positively with emotional eating and binge eating. Finally, leptin showed an indirect effect on the association between BMI and all these reward-related behaviors. These results suggest that a variation of BMI maintains these pathological ED behaviors through a variation in leptin levels. Considering the role of leptin in reward circuits, the results seem to confirm an aberrant food-related reward mechanism in ED patients.


Subject(s)
Anorexia Nervosa/blood , Body Weight/physiology , Bulimia/blood , Feeding and Eating Disorders/pathology , Feeding and Eating Disorders/psychology , Leptin/blood , Psychopathology , Reward , Adult , Anorexia Nervosa/diagnosis , Anorexia Nervosa/psychology , Binge-Eating Disorder/psychology , Body Mass Index , Bulimia/diagnosis , Bulimia/psychology , Case-Control Studies , Emotions , Exercise , Feeding and Eating Disorders/blood , Female , Food , Humans , Male
16.
Neuropeptides ; 81: 102031, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32143816

ABSTRACT

Glucagon-like peptide-2 (GLP-2) has been reported to indirectly relax gastric smooth muscle. In the present study we investigated, through a combined mechanical and immunohistochemical approach, whether GLP-2 interferes with the electrical field stimulation (EFS)-induced vipergic relaxant responses and the mechanism through which it occurs. For functional experiments, strips from the mouse gastric fundus were mounted in organ baths for isometric recording of the mechanical activity. Vasoactive intestinal peptide (VIP) immunoreactivity in GLP-2 exposed specimens was also evaluated by immunohistochemistry. In carbachol pre-contracted strips, GLP-2 (20 nM) evoked a tetrodotoxin (TTX)-sensitive relaxation, similar in shape to the TTX-insensitive of 100 nM VIP. In the presence of GLP-2, VIP had no longer effects and no more response to GLP-2 was observed following VIP receptor saturation. EFS (4-16 Hz) induced a fast relaxant response followed, at the higher stimulation frequencies (≥ 8 Hz), by a slow one. This latter was abolished either by GLP-2 or VIP receptor saturation as well as by the VIP receptor antagonist, VIP 6-28 (10 µM). A decrease of VIP-immunoreactive nerve structures in the GLP-2 exposed specimens was observed. These results suggest that, in the mouse gastric fundus, GLP-2 influences the EFS-induced slow relaxant response by promoting neuronal VIP release.


Subject(s)
Gastric Fundus/physiology , Glucagon-Like Peptide 2/physiology , Neurons/physiology , Vasoactive Intestinal Peptide/physiology , Animals , Female , Mice , Muscle Contraction/physiology , Muscle, Smooth/physiology
17.
Front Physiol ; 10: 1000, 2019.
Article in English | MEDLINE | ID: mdl-31447692

ABSTRACT

Some adipokines known to regulate food intake at a central level can also affect gastrointestinal motor responses. These are recognized to be peripheral signals able to influence feeding behavior as well. In this view, it has been recently observed that adiponectin (ADPN), which seems to have a role in sending satiety signals at the central nervous system level, actually affects the mechanical responses in gastric strips from mice. However, at present, there are no data in the literature about the electrophysiological effects of ADPN on gastric smooth muscle. To this aim, we achieved experiments on smooth muscle cells (SMCs) of gastric fundus to find out a possible action on SMC excitability and on membrane phenomena leading to the mechanical response. Experiments were made inserting a microelectrode in a single cell of a muscle strip of the gastric fundus excised from adult female mice. We found that ADPN was able to hyperpolarize the resting membrane potential, to enhance the delayed rectifier K+ currents and to reduce the voltage-dependent Ca2+ currents. Our overall results suggest an inhibitory action of ADPN on gastric SMC excitation-contraction coupling. In conclusion, the depressant action of ADPN on the gastric SMC excitability, here reported for the first time, together with its well-known involvement in metabolism, might lead us to consider a possible contribution of ADPN also as a peripheral signal in the hunger-satiety cycle and thus in feeding behavior.

18.
Curr Protein Pept Sci ; 20(6): 614-629, 2019.
Article in English | MEDLINE | ID: mdl-30663565

ABSTRACT

The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.


Subject(s)
Adipocytes/chemistry , Adiponectin/metabolism , Apelin/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Gastrointestinal Motility/physiology , Leptin/metabolism , Nerve Tissue Proteins/metabolism , Adipose Tissue/metabolism , Animals , Brain/metabolism , Eating , Feeding and Eating Disorders/diagnosis , Feeding and Eating Disorders/drug therapy , Feeding and Eating Disorders/metabolism , Gastrointestinal Tract/physiology , Humans , Muscle, Smooth/metabolism , Nucleobindins , Obesity/diagnosis , Obesity/drug therapy , Obesity/metabolism
19.
World J Gastroenterol ; 24(35): 4028-4035, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30254407

ABSTRACT

AIM: To investigate whether the adipocytes derived hormone adiponectin (ADPN) affects the mechanical responses in strips from the mouse gastric fundus. METHODS: For functional experiments, gastric strips from the fundal region were cut in the direction of the longitudinal muscle layer and placed in organ baths containing Krebs-Henseleit solution. Mechanical responses were recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrical field stimulation (EFS) was applied via two platinum wire rings through which the preparation was threaded. The effects of ADPN were investigated on the neurally-induced contractile and relaxant responses elicited by EFS. The expression of ADPN receptors, Adipo-R1 and Adipo-R2, was also evaluated by touchdown-PCR analysis. RESULTS: In the functional experiments, EFS (4-16 Hz) elicited tetrodotoxin (TTX)-sensitive contractile responses. Addition of ADPN to the bath medium caused a reduction in amplitude of the neurally-induced contractile responses (P < 0.05). The effects of ADPN were no longer observed in the presence of the nitric oxide (NO) synthesis inhibitor L-NG-nitro arginine (L-NNA) (P > 0.05). The direct smooth muscle response to methacholine was not influenced by ADPN (P > 0.05). In carbachol precontracted strips and in the presence of guanethidine, EFS induced relaxant responses. Addition of ADPN to the bath medium, other than causing a slight and progressive decay of the basal tension, increased the amplitude of the neurally-induced relaxant responses (P < 0.05). Touchdown-PCR analysis revealed the expression of both Adipo-R1 and Adipo-R2 in the gastric fundus. CONCLUSION: The results indicate for the first time that ADPN is able to influence the mechanical responses in strips from the mouse gastric fundus.


Subject(s)
Adiponectin/physiology , Gastric Fundus/physiology , Muscle, Smooth/physiology , Adipocytes/metabolism , Adipose Tissue, White/cytology , Adipose Tissue, White/metabolism , Animals , Electric Stimulation , Female , Mice , Mice, Inbred C57BL , Muscle Contraction/physiology , Muscle Relaxation/physiology , Receptors, Adiponectin/metabolism
20.
World J Gastroenterol ; 24(8): 882-893, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29491682

ABSTRACT

AIM: To investigate the signaling pathways involved in the relaxin (RLX) effects on ileal preparations from mice through mechanical and electrophysiological experiments. METHODS: For mechanical experiments, ileal preparations from female mice were mounted in organ baths containing Krebs-Henseleit solution. The mechanical activity was recorded via force-displacement transducers, which were coupled to a polygraph for continuous recording of isometric tension. Electrophysiological measurements were performed in current- and voltage-clamp conditions by a microelectrode inserted in a single smooth muscle cell (SMC) of the ileal longitudinal layer. Both the membrane passive properties and inward voltage-dependent L-type Ca2+ currents were recorded using suitable solutions and voltage stimulation protocols. RESULTS: Mechanical experiments showed that RLX induced a decay of the basal tension and a reduction in amplitude of the spontaneous contractions. The effects of RLX were partially reduced by 1H-[1,2,4]oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ) or 9-cyclopentyladenine mesylate (9CPA), inhibitors of guanylate cyclase (GC) and adenylate cyclase (AC), respectively, and were abolished in the concomitant presence of both drugs. Electrophysiological experiments demonstrated that RLX directly influenced the biophysical properties of ileal SMCs, decreasing the membrane conductance, hyperpolarizing the resting membrane potential, reducing the L-type calcium current amplitude and affecting its kinetics. The voltage dependence of the current activation and inactivation time constant was significantly speeded by RLX. Each electrophysiological effect of RLX was reduced by ODQ or 9CPA, and abolished in the concomitant presence of both drugs as observed in mechanical experiments. CONCLUSION: Our new findings demonstrate that RLX influences ileal muscle through a dual mechanism involving both GC and AC.


Subject(s)
Gastrointestinal Motility/physiology , Ileum/physiology , Relaxin/metabolism , Signal Transduction/physiology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Female , Membrane Potentials/physiology , Mice , Microelectrodes , Models, Animal , Muscle Contraction/physiology , Muscle, Smooth/cytology , Muscle, Smooth/physiology , Myocytes, Smooth Muscle/metabolism , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...