Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microsc Microanal ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758982

ABSTRACT

The investigation of hydrogen in atom probe tomography appears as a relevant challenge due to its low mass, high diffusion coefficient, and presence as a residual gas in vacuum chambers, resulting in multiple complications for atom probe studies. Different solutions were proposed in the literature like ex situ charging coupled with cryotransfer or H charging at high temperature in a separate chamber. Nevertheless, these solutions often faced challenges due to the complex control of specimen temperature during hydrogen charging and subsequent analysis. In this paper, we propose an alternative route for in situ H charging in atom probe derived from a method developed in field ion microscopy. By applying negative voltage nanosecond pulse on the specimen in an atom probe chamber under a low pressure of H2, it is demonstrated that a high dose of H can be implanted in the range 2-20 nm beneath the specimen surface. An atom probe chamber was modified to enable direct negative pulse application with controlled gas pressure, pulse repetition rate, and pulse amplitude. Through electrodynamical simulations, we show that the implantation energy falls within the range 100-1,000 eV and a theoretical depth of implantation was predicted and compared to experiments.

2.
Microsc Microanal ; : 1-16, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34538293

ABSTRACT

A position and energy-sensitive detector has been developed for atom probe tomography (APT) instruments in order to deal with some mass peak overlap issues encountered in APT experiments. Through this new type of detector, quantitative and qualitative improvements could be considered for critical materials with mass peak overlaps, such as nitrogen and silicon in TiSiN systems, or titanium and carbon in cemented carbide materials. This new detector is based on a thin carbon foil positioned on the front panel of a conventional MCP-DLD detector. According to several studies, it has been demonstrated that the impact of ions on thin carbon foils has the effect of generating a number of transmitted and reflected secondary electrons. The number generated mainly depends on both the kinetic energy and the mass of incident particles. Despite the fact that this phenomenon is well known and has been widely discussed for decades, no studies have been performed to date for using it as a means to discriminate particles energy. Therefore, this study introduces the first experiments on a potential new generation of APT detectors that would be able to resolve mass peak overlaps through the energy-sensitivity of thin carbon foils.

SELECTION OF CITATIONS
SEARCH DETAIL