Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1651, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395964

ABSTRACT

Quantum key distribution (QKD) is a secure communication scheme for sharing symmetric cryptographic keys based on the laws of quantum physics, and is considered a key player in the realm of cyber-security. A critical challenge for QKD systems comes from the fact that the ever-increasing rates at which digital data are transmitted require more and more performing sources of quantum keys, primarily in terms of secret key generation rate. High-dimensional QKD based on path encoding has been proposed as a candidate approach to address this challenge. However, while proof-of-principle demonstrations based on lab experiments have been reported in the literature, demonstrations in realistic environments are still missing. Here we report the generation of secret keys in a 4-dimensional hybrid time-path-encoded QKD system over a 52-km deployed multicore fiber link forming by looping back two cores of a 26-km 4-core optical fiber. Our results indicate that robust high-dimensional QKD can be implemented in a realistic environment by combining standard telecom equipment with emerging multicore fiber technology.

2.
Opt Express ; 31(6): 9437-9447, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157515

ABSTRACT

Quantum key distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way, exploiting quantum physics. While current QKD systems are mainly based on attenuated laser pulses, deterministic single-photon sources could give concrete advantages in terms of secret key rate (SKR) and security owing to the negligible probability of multi-photon events. Here, we introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785 nm. With an estimated maximum SKR of 0.5 Mbps, our solution paves the way for room-temperature single-photon sources for quantum communication protocols.

3.
Science ; 360(6386): 285-291, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29519918

ABSTRACT

The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies.

4.
Sci Rep ; 7(1): 12459, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963480

ABSTRACT

Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

5.
Sci Rep ; 6: 36756, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004821

ABSTRACT

Quantum key distribution (QKD) and quantum communication enable the secure exchange of information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and phase of weak coherent pulses. The ability of extracting two bits of information per detection event, enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of more dimensions, the proposed protocol remains simple, practical, and fully integrable.

6.
Phys Rev Lett ; 115(4): 040502, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26252672

ABSTRACT

Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER=4.6% for a total link duration of 85 s. The mean photon number per pulse µ_{sat} leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

7.
Nat Commun ; 4: 2363, 2013.
Article in English | MEDLINE | ID: mdl-24008848

ABSTRACT

In quantum key distribution implementations, each session is typically chosen long enough so that the secret key rate approaches its asymptotic limit. However, this choice may be constrained by the physical scenario, as in the perspective use with satellites, where the passage of one terminal over the other is restricted to a few minutes. Here we demonstrate experimentally the extraction of secure keys leveraging an optimal design of the prepare-and-measure scheme, according to recent finite-key theoretical tight bounds. The experiment is performed in different channel conditions, and assuming two distinct attack models: individual attacks or general quantum attacks. The request on the number of exchanged qubits is then obtained as a function of the key size and of the ambient quantum bit error rate. The results indicate that viable conditions for effective symmetric, and even one-time-pad, cryptography are achievable.

SELECTION OF CITATIONS
SEARCH DETAIL
...