Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 934: 172776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38697520

ABSTRACT

The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus) shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated collision mitigation options estimated potentially minimal impact to industry, as most whale shark core habitat areas were small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to mitigation is needed within priority whale shark habitats to ensure collision protection for the species.


Subject(s)
Conservation of Natural Resources , Sharks , Ships , Animals , Sharks/physiology , Endangered Species , Environmental Monitoring
2.
Proc Natl Acad Sci U S A ; 119(20): e2117440119, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35533277

ABSTRACT

Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks' horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial "cryptic" lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.


Subject(s)
Sharks , Animals , Endangered Species , Plankton , Ships
3.
Mar Pollut Bull ; 173(Pt A): 112935, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34562849

ABSTRACT

Oil and gas platforms act as artificial habitats for a myriad of marine organisms. In this study, we used opportunistic remotely operated vehicle (ROV) data to describe fouling assemblages through the characterization of functional groups in the Al Shaheen oil field, situated in Qatari waters. The surveys showed a strong vertical stratification, with the number of functional groups increasing from the surface to the bottom. In addition, the majority of functional groups had their highest frequency of occurrence in the 35-60 m interval. In turn, multivariate analyses showed a slight structure among platforms with different ages. The lowest number of functional groups occurred in the early ages (2-3 years old), and some groups either increased or decreased their frequency and abundance along the years. A step further is now required to determine whether these platform foundations should be converted to reefs after their decommissioning (i.e., Rigs to Reefs approach).


Subject(s)
Ecosystem , Oil and Gas Fields , Biodiversity , Multivariate Analysis
4.
Mol Ecol Resour ; 21(3): 690-702, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33179423

ABSTRACT

Environmental DNA (eDNA) provides a promising supplement to traditional sampling methods for population genetic inferences, but current studies have almost entirely focused on short mitochondrial markers. Here, we develop one mitochondrial and one nuclear set of target capture probes for the whale shark (Rhincodon typus) and test them on seawater samples collected in Qatar to investigate the potential of target capture for eDNA-based population studies. The mitochondrial target capture successfully retrieved ~235× (90× - 352× per base position) coverage of the whale shark mitogenome. Using a minor allele frequency of 5%, we find 29 variable sites throughout the mitogenome, indicative of at least five contributing individuals. We also retrieved numerous mitochondrial reads from an abundant nontarget species, mackerel tuna (Euthynnus affinis), showing a clear relationship between sequence similarity to the capture probes and the number of captured reads. The nuclear target capture probes retrieved only a few reads and polymorphic variants from the whale shark, but we successfully obtained millions of reads and thousands of polymorphic variants with different allele frequencies from E. affinis. We demonstrate that target capture of complete mitochondrial genomes and thousands of nuclear loci is possible from aquatic eDNA samples. Our results highlight that careful probe design, taking into account the range of divergence between target and nontarget sequences as well as presence of nontarget species at the sampling site, is crucial to consider. eDNA sampling coupled with target capture approaches provide an efficient means with which to retrieve population genomic data from aggregating and spawning aquatic species.


Subject(s)
DNA, Environmental , DNA, Mitochondrial , Genome, Mitochondrial , Sharks , Animals , DNA Probes , Gene Frequency , Qatar , Seawater , Sharks/genetics
5.
Conserv Biol ; 34(3): 697-710, 2020 06.
Article in English | MEDLINE | ID: mdl-31729081

ABSTRACT

Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.


ADN Ambiental de Vertebrados Tomado del Agua Marina para Realizar Biomonitoreos de los Hábitats Marinos Resumen La conservación y el manejo de la biodiversidad marina depende del biomonitoreo de los hábitats marinos, pero las estrategias actuales requieren de muchos recursos y de diferentes estrategias para diferentes organismos. El ADN ambiental (ADNa) extraído de muestras de agua es una estrategia eficiente y versátil para detectar animales acuáticos. En el océano, la composición del ADNa refleja la fauna local a escalas espaciales finas, pero se sabe poco sobre la efectividad del monitoreo basado en el ADNa de las comunidades marinas a grandes escalas. Investigamos el potencial del ADNa para caracterizar y distinguir las comunidades marinas a escalas espaciales grandes mediante una comparación de la composición de especies de vertebrados entre los hábitats marinos de Qatar, en el Golfo Arábigo (también conocido como el Golfo Persa), con base en el meta-código de barras del ADNa extraído de muestras de agua de mar. Realizamos análisis de acumulación de especies para estimar cuánta de la diversidad de vertebrados logramos detectar. Obtuvimos secuencias de ADNa de diversos ensamblajes de vertebrados marinos, los cuales abarcaron 191 taxones de 73 familias. Estos taxones incluyeron a especies raras y en peligro de extinción y cubrieron el 36% de los géneros de peces óseos previamente registrados en el golfo. Los sitios con tipos similares de hábitat también fueron similares en cuanto a la composición del ADNa. Los análisis de acumulación de especies mostraron que el número de réplicas de muestras fue insuficiente para algunos sitios de muestreo, pero sugieren que unos cientos de muestras de ADNa podrían capturar potencialmente >90% de la diversidad de vertebrados marinos en el área de estudio. Nuestros resultados confirman que las muestras de agua marina contienen firmas moleculares características del hábitat y que el monitoreo de ADNa puede cubrir eficientemente la diversidad de vertebrados a escalas relevantes para la conservación y el manejo nacional y regional.


Subject(s)
Biological Monitoring , DNA, Environmental , Animals , Biodiversity , Conservation of Natural Resources , DNA Barcoding, Taxonomic , Ecosystem , Environmental Monitoring , Seawater , Vertebrates/genetics
6.
PLoS One ; 12(9): e0185360, 2017.
Article in English | MEDLINE | ID: mdl-28934371

ABSTRACT

The Arabian Gulf is the warmest sea in the world and is host to a globally significant population of the whale shark Rhincodon typus. To investigate regional whale shark behaviour and movements, 59 satellite-linked tags were deployed on whale sharks in the Al Shaheen area off Qatar from 2011-14. Four different models of tag were used throughout the study, each model able to collect differing data or quantities of data. Retention varied from one to 227 days. While all tagged sharks crossed international maritime boundaries, they typically stayed within the Arabian Gulf. Only nine sharks dispersed through the narrow Strait of Hormuz into the Gulf of Oman. Most sharks stayed close to known or suspected feeding aggregation sites over summer months, but dispersed throughout the Arabian Gulf in winter. Sharks rarely ventured into shallow areas (<40 m depth). A single, presumably pregnant female shark was the sole animal to disperse a long distance, crossing five international maritime boundaries in 37 days before the tag detached at a distance of approximately 2644 km from the tagging site, close to the Yemeni-Somali border. No clear space-use differentiation was evident between years, for sharks of different sizes, or between sexes. Whale sharks spent the most time (~66%) in temperatures of 24-30°C and in shallow waters <100 m depth (~60%). Sharks spent relatively more time in cooler (X2 = 121.692; p<0.05) and deeper (X2 = 46.402; p<0.05) water at night. Sharks rarely made dives deeper than 100 m, reflecting the bathymetric constraints of the Gulf environment. Kernel density analysis demonstrated that the tagging site at Al Shaheen was the regional hotspot for these sharks, and revealed a probable secondary aggregation site for whale sharks in nearby Saudi Arabian waters. Analysis of visual re-sightings data of tagged sharks revealed that 58% of tagged individuals were re-sighted back in Al Shaheen over the course of this study, with 40% recorded back at Al Shaheen in the year following their initial identification. Two sharks were confirmed to return to Al Shaheen in each of the five years of study.


Subject(s)
Animal Migration , Hot Temperature , Sharks , Animals , Behavior, Animal , Ecosystem , Female , Male , Seasons , Spacecraft
7.
PLoS One ; 11(6): e0158593, 2016.
Article in English | MEDLINE | ID: mdl-27362839

ABSTRACT

Data on the occurrence of whale sharks, Rhincodon typus, in the Arabian Gulf and Gulf of Oman were collected by dedicated boat surveys and via a public-sightings scheme during the period from 2011 to 2014. A total of 422 individual whale sharks were photo-identified from the Arabian Gulf and the northern Gulf of Oman during that period. The majority of sharks (81%, n = 341) were encountered at the Al Shaheen area of Qatar, 90 km off the coast, with the Musandam region of Oman a secondary area of interest. At Al Shaheen, there were significantly more male sharks (n = 171) than females (n = 78; X2 = 17.52, P < 0.05). Mean estimated total length (TL) for sharks was 6.90 m ± 1.24 (median = 7 m; n = 296). Males (7.25 m ± 1.34; median = 8 m, n = 171) were larger than females (6.44 m ±1.09; median = 7 m, n = 78; Mann-Whitney U test, p < 0.01). Of the male sharks assessed for maturity 63% were mature (n = 81), with 50% attaining maturity by 7.29 m and 100% by 9.00 m. Two female sharks of >9 m individuals were visually assessed as pregnant. Connectivity among sharks sighted in Qatari, Omani and UAE waters was confirmed by individual spot pattern matches. A total of 13 identified sharks were re-sighted at locations other than that at which they were first sighted, including movements into and out of the Arabian Gulf through the Strait of Hormuz. Maximum likelihood techniques were used to model an estimated combined population for the Arabian Gulf and Gulf of Oman of 2837 sharks ± 1243.91 S.E. (95% C.I. 1720-6295). The Al Shaheen aggregation is thus the first site described as being dominated by mature males while the free-swimming pregnant females are the first reported from the Indian Ocean.


Subject(s)
Animal Distribution/physiology , Animal Migration/physiology , Sharks/physiology , Animals , Ecosystem , Female , Indian Ocean , Male , Oman , Population Density
8.
Nat Ecol Evol ; 1(1): 4, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-28812572

ABSTRACT

Population genetics is essential for understanding and managing marine ecosystems, but sampling remains challenging. We demonstrate that high-throughput sequencing of seawater environmental DNA can provide useful estimates of genetic diversity in a whale shark (Rhincodon typus) aggregation. We recover similar mitochondrial haplotype frequencies in seawater compared to tissue samples, reliably placing the studied aggregation in a global genetic context and expanding the applications of environmental DNA to encompass population genetics of aquatic organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...