Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biol Drug Des ; 71(4): 298-305, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18312292

ABSTRACT

Over the past 10 years, protease inhibitors have been a key component in antiretroviral therapies for HIV/AIDS. While the vast majority of HIV/AIDS cases in the world are due to HIV-1, HIV-2 infection must also be addressed. HIV-2 is endemic to Western Africa, and has also appeared in European countries such as Portugal, Spain, and Estonia. Current protease inhibitors have not been optimized for treatment of HIV-2 infection; therefore, it is important to assess the effectiveness of currently FDA-approved protease inhibitors against the HIV-2 protease, which shares only 50% sequence identity with the HIV-1 protease. Kinetic inhibition assays were performed to measure the inhibition constants (K(i)) of the HIV-1 protease inhibitors indinavir, nelfinavir, saquinavir, ritonavir, amprenavir, lopinavir, atazanavir, tipranavir, and darunavir against the HIV-2 protease. Lopinavir, saquinavir, tipranavir, and darunavir exhibit the highest potency with K(i) values of 0.7, 0.6, 0.45, and 0.17 nm, respectively. These K(i) values are 84, 2, 24, and 17 times weaker than the corresponding values against the HIV-1 protease. In general, inhibitors show K(i) ratios ranging between 2 and 80 for the HIV-2 and HIV-1 proteases. The relative drop in potency is proportional to the affinity of the inhibitor against the HIV-1 protease and is related to specific structural characteristics of the inhibitors. In particular, the potency drop is high when the maximum cap size of the inhibitors consists of very few atoms. Caps are groups located at the periphery of the molecule that are added to core structures to increase the specificity of the inhibitor to its target. The caps positioned on the HIV-1 protease inhibitors affect selectivity through interactions with distinct regions of the binding pocket. The flexibility and adaptability imparted by the higher number of rotatable bonds in large caps enables an inhibitor to accommodate changes in binding pocket geometry between HIV-1 and HIV-2 protease.


Subject(s)
HIV Protease Inhibitors/pharmacology , HIV Protease/drug effects , Darunavir , HIV Protease/metabolism , Hydrogen Bonding , Kinetics , Lopinavir , Pyridines/pharmacology , Pyrimidinones/pharmacology , Pyrones/pharmacology , Saquinavir/pharmacology , Structure-Activity Relationship , Substrate Specificity , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...