Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 43(4): 862-871, 2019 04.
Article in English | MEDLINE | ID: mdl-30206336

ABSTRACT

BACKGROUND/OBJECTIVES: High salt intake has been linked to several diseases including obesity and an increased risk of death; however, fecal salinity and the ability of salt to alter the gut microbiota, which was recently identified as an instrumental factor for health and disease, remains poorly explored. METHODS/SUBJECTS: We analyzed the fecal samples of 1326 human individuals for salinity by refractometry, 572 for gut microbiota by culturomics, and 164 by 16S rRNA-targeted metagenomics. Geographical origin, age, gender, and obesity were tested as predictors of fecal salinity and halophilic diversity. All halophilic isolates were characterized by taxonogenomics and their genome sequenced. RESULTS: Fecal salinity was associated with obesity independently of geographical origin, gender, and age. The first 2 human-associated halophilic archaeal members were isolated along with 64 distinct halophilic species, including 21 new species and 41 known in the environment but not in humans. No halophiles grow in less than 1.5% salinity. Above this threshold, the richness of the halophilic microbiota was correlated with fecal salinity (r = 0.58, p < 0.0001). 16S metagenomics linked high fecal salinity to decreased diversity (linear regression, p < .035) and a depletion in anti-obesity Akkermansia muciniphila and Bifidobacterium, specifically B. longum and B. adolescentis. Genomics analysis suggested that halophilic microbes are not only transient passengers but may be residents of the human gut. CONCLUSIONS: High salt levels are associated with alteration of the gut microbial ecosystem and halophilic microbiota, as discovered during this study. Further studies should clarify if the gut microbiota alterations associated with high salt levels and the human halophilic microbiota could be causally related to human disease, such as obesity.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/genetics , Inflammation/microbiology , Obesity/microbiology , Sodium Chloride, Dietary/adverse effects , Adult , Case-Control Studies , Female , Global Health , Humans , Inflammation/etiology , Inflammation/physiopathology , Male , Obesity/etiology , Obesity/physiopathology , RNA, Ribosomal, 16S/genetics , Refractometry
2.
New Microbes New Infect ; 27: 40-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30581574

ABSTRACT

Few studies have examined the interaction of human geography, microbial community structure and obesity. We tested obese adult volunteers from France, Saudi Arabia, French Polynesia and from a traditional population in the village of Trois-Sauts in French Guiana by sequencing the V3-V4 region. We also sequenced homemade fermented cachiri beers that were obtained from the traditional Amazonian population and are highly consumed by this population. We found that French and Saudis had significantly less richness and biodiversity in their gut microbiota than Amazonians and Polynesians (p <0.05). Principle coordinate analysis of the overall composition of the genera communities revealed that the microbiomes of Amazonians clustered independently from the other obese individuals. Moreover, we found that Amazonians presented significantly stricter anaerobic genera than the Saudis, French and Polynesians (p < 0.001). Polynesians presented significantly lower relative abundance of Lactobacillus sp. than French (p 0.01) and Saudis (p 0.05). Treponema berlinense and Treponema succinifaciens were only present in the gut microbiome of Amazonians. The cachiri beers presented significantly more bacterial species in common with the gut microbiome of Amazonians (p < 0.005). Obese individuals with different origins present modifications in their gut microbiota, and we provide evidence that the cachiri beers influenced the gut microbiome of Amazonians.

3.
New Microbes New Infect ; 27: 14-21, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30555706

ABSTRACT

There is a significant gap in our knowledge of the microbe-host relationship between urban and traditional rural populations. We conducted a large-scale study to examine the gut microbiota of different traditional rural and urban lifestyles in human populations. Using high-throughput 16S ribosomal RNA gene amplicon sequencing, we tested urban French, Saudi, Senegalese, Nigerian and Polynesian individuals as well as individuals living in traditional rural societies, including Amazonians from French Guiana, Congolese Pygmies, Saudi Bedouins and Algerian Tuaregs. The gut microbiota from individuals living in traditional rural settings clustered differently and presented significantly higher diversity than those of urban populations (p 0.01). The bacterial taxa identified by class analysis as contributing most significantly to each cluster were Phascolarctobacterium for traditional rural individuals and Bifidobacterium for urban individuals. Spirochaetae were only present in the gut microbiota of individuals from traditional rural societies, and the gut microbiota of all traditional rural populations was enriched with Treponema succinifaciens. Cross-transmission of Treponema from termites or swine to humans or the increased use of antibiotics in nontraditional populations may explain why Treponema is present only in the gut microbiota of traditional rural populations.

4.
Nutr Diabetes ; 5: e153, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25915742

ABSTRACT

BACKGROUND/OBJECTIVES: The gut microbiota contributes to energy acquisition from food, and changes in the gut microbiome are associated with obesity. The eating habits of Saudis are much different than those of Europeans, and our objective was to compare the fecal microbiota of obese and normal weight Saudis and French. SUBJECTS/METHODS: Illumina MiSeq deep sequencing was used to test the gut microbiota of 9 normal weight and 9 obese individuals from Saudi Arabia and 16 normal weight and 12 obese individuals from France. RESULTS: Obese French possessed significantly more relative Proteobacteria (P=0.002) and Bacteroidetes (P=0.05) and had lower richness and biodiversity at all the operational taxonomic unit (OTU) cutoffs (P<0.05) than normal weight French. Obese Saudis possessed significantly more Firmicutes (P=0.001) without a difference in richness (P=0.2) and biodiversity (P=0.3) compared with normal weight Saudis. We found a common bacterial species core of 23 species existing in ⩾50% of obese and normal weight Saudis and 29 species in ⩾50% of obese and normal weight French. Actinomyces odontolyticus, Escherichia coli and Ruminococcus obeum were present in at least 50% of all individuals tested. French individuals had significantly higher richness and biodiversity compared with Saudis at all the OTU cutoffs (P<0.05). CONCLUSION: Microbiota differences between obese and normal weight French were not similar to those between obese and normal weight Saudis. The studies of different populations can result in contrasting data regarding the associations of the gut microbiota and obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...