Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(11): 18098-18107, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221617

ABSTRACT

In non-Hermitian settings, the particular position at which two eigenstates coalesce in the complex plane under a variation of a physical parameter is called an exceptional point. An open disordered system is a special class of non-Hermitian system, where the degree of scattering directly controls the confinement of the modes. Herein a non-perturbative theory is proposed which describes the evolution of modes when the permittivity distribution of a 2D open dielectric system is modified, thereby facilitating to steer individual eigenstates to such a non-Hermitian degeneracy. The method is used to predict the position of such an exceptional point between two Anderson-localized states in a disordered scattering medium. We observe that the accuracy of the prediction depends on the number of localized states accounted for. Such an exceptional point is experimentally accessible in practically relevant disordered photonic systems.

2.
Nat Commun ; 11(1): 5530, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33139713

ABSTRACT

Spectral fingerprints of molecules are mostly accessible in the terahertz (THz) and mid-infrared ranges, such that efficient molecular-detection technologies rely on broadband coherent light sources at such frequencies. If THz Quantum Cascade Lasers can achieve octave-spanning bandwidth, their tunability and wavelength selectivity are often constrained by the geometry of their cavity. Here we introduce an adaptive control scheme for the generation of THz light in Quantum Cascade Random Lasers, whose emission spectra are reshaped by applying an optical field that restructures the permittivity of the active medium. Using a spatial light modulator combined with an optimization procedure, a beam in the near infrared (NIR) is spatially patterned to transform an initially multi-mode THz random laser into a tunable single-mode source. Moreover, we show that local NIR illumination can be used to spatially sense complex near-field interactions amongst modes. Our approach provides access to new degrees of freedom that can be harnessed to create broadly-tunable sources with interesting potential for applications like self-referenced spectroscopy.

3.
Phys Rev Lett ; 109(3): 033903, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861853

ABSTRACT

Active control of the spatial pump profile is proposed to exercise control over random laser emission. We demonstrate numerically the selection of any desired lasing mode from the emission spectrum. An iterative optimization method is employed, first in the regime of strong scattering where modes are spatially localized and can be easily selected using local pumping. Remarkably, this method works efficiently even in the weakly scattering regime, where strong spatial overlap of the modes precludes spatial selectivity. A complex optimized pump profile is found, which selects the desired lasing mode at the expense of others, thus demonstrating the potential of pump shaping for robust and controllable single mode operation of a random laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...